摘要
高斯过程回归(Gaussian process regression,GPR)是一种基于高斯过程的非参数化贝叶斯回归方法,其可以灵活适应不同类型数据,用于建模和预测数据之间的复杂关系,具有拟合能力强、泛化能力好等特点。针对海量用户场景下用户量实时预测问题,提出一种基于GPR的用户量预测优化方法。在滑动窗口方法处理数据的基础上,选择合适的核函数,基于k折交叉验证得到最佳超参数组合以实现GPR模型训练,完成在线用户量的实时预测并进行性能评估。实验结果表明,相比于采用训练集中输出数据方差的50%作为信号噪声估计量的传统方案,所提方法具有较高的预测准确度,并且在测试集均方根误差(root mean square,RMS)、平均绝对误差(mean absolute error,MAE)、平均偏差(mean bias error,MBE)和决定系数R 2这4个评估指标方面均有提升,其中MBE至少提升了43.3%。
Gaussian process regression(GPR)is a non-parametric Bayesian regression method based on Gaussian processes.It is flexible in adapting to different types of data,and it is used to model and predict complex relationships between different types of data.It has strong fitting capabilities and good generalization abilities.A user quantity prediction optimization method based on GPR is proposed to tackle the problem of real-time user quantity prediction in the context of massive user scenario.Building upon the sliding window method for data processing,the method selects a suitable kernel function and uses k-fold cross-validation to determine the optimal hyperparameter combination for training the GPR model,which enables the real-time prediction of online user quantity.Finally,the performance of the model is evaluated.The experimental results demonstrate that compared with the traditional approach that uses half of the variance of the output data in the training set as the signal noise estimator,the proposed method has higher prediction accuracy and improvements in the four following evaluation metrics of root mean square(RMS),mean absolute error(MAE),mean bias error(MBE)and determination coefficient R 2 on the test set.Specifically,the MBE shows an improvement of at least 43.3%.
作者
刘学浩
刘文学
杨超三
祝文晶
宋玉
李金海
LIU Xuehao;LIU Wenxue;YANG Chaosan;ZHU Wenjing;SONG Yu;LI Jinhai(Communication and Information Engineering Research and Development Center,Institute of Microelectronics of the Chinese Academy of Sciences,Beijing 100029,China;School of Integrated Circuits,University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2024年第8期2721-2729,共9页
Systems Engineering and Electronics
基金
地球观测与导航(2022YFB3903900)
中国科学院“西部之光”交叉团队项目(xbzg-zdsys-202120)资助课题。
关键词
高斯过程回归
用户量预测
滑动窗口
交叉验证
超参数优化
Gaussian process regression(GPR)
user quantity prediction
sliding window
cross-validation
hyperparameter optimization