期刊文献+

水电站巡检数据挖掘与异常检测技术研究

Research on Inspection Data Mining and Anomaly Detection Technology for Hydropower Station
下载PDF
导出
摘要 随着智能科技的不断进步,巡检机器人在水电站设施的维护巡检工作中扮演了日益重要的角色。本研究聚焦于一套基于数据挖掘与异常检测技术的数据分析解决方案,对机器人收集的原始巡检数据进行清洗、整合以及特征提炼。运用聚类分析方法对正常运行状态下的设备数据进行模式刻画与模型建构,构建出常态行为基准。采用先进的异常检测算法对可能存在的异常情况进行精准识别与分类。 With the continuous progress of intelligent technology,inspection robots play an increasingly important role in the maintenance and inspection of hydropower station facilities.This study focuses on a set of data analysis solutions based on data mining and anomaly detection technology,then cleans and integrates the original inspection data collected by robots,and refines the characteristics.The cluster analysis method is used for the pattern delineation and model construction of the equipment data under normal operation statues,and the normal behavior benchmark is constructed.Advanced anomaly detection algorithms are used to accurately identify and classify possible anomalies.
作者 郭伟 Guo Wei(Chongqing Datang International Pengshui Hydropower Development Co.,Ltd.,Chongqing 400000,China)
出处 《科学与信息化》 2024年第16期41-43,共3页 Technology and Information
关键词 巡检机器人 水电站 数据挖掘 异常检测 inspection robot hydropower station data mining anomaly detection
  • 相关文献

参考文献3

二级参考文献23

  • 1郑成兴.网络流量预测方法和实际预测分析[J].计算机工程与应用,2006,42(23):127-130. 被引量:16
  • 2Lee W, Stolfo S. Data mining approaches for intrusion detection[C]. San Antonio, TX: Proc. 7th USENIX Security Symposium(SECURITY′98). 1998.79-94.
  • 3Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large database[C]. Washington DC:Proceedings of the ACM SIGMOD Conference on Management of Data. 1993.207-216.
  • 4Han J, Fu Y. Discovery of multiple-level association rules from large databases[C]. Proceedings of the 21st Very Large Data Bases Conferences, Zurich, Switzerland, 1995.
  • 5Ross Quinlan J. C4.5 programs for machine learning [Z].Morgan Kaufmann, 1993.
  • 6http:∥www. ll.mit.edu/IST/ideval/.
  • 7Bridges S, Vaughn R. Fuzzy data mining and genetic algorithms applied to intrusion detection[C]. Proc. 23rd National Information Systems Security Conf. Baltimore, MA,2000.
  • 8Shi F. Genetic algorithms for feature selection in an intrusion detection application, masters thesis [C]. Mississippi State University, Mississippi State, MS, 2000.
  • 9Eleazar Eskin, Andrew Arnold, Michael Prerau,et al. A geometric framework for unsupervised anomaly detection: detecting intrusions in unlabled data[Z]. Data Mining for Securiyt Application(DMSA-2002), Kluwer, 2002.
  • 10王金荣.一种基于优化正规基的域元素乘法改进算法[J].计算机工程与应用,2008,44(23):62-64. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部