期刊文献+

局域共振声学超材料耦合效应研究

Coupling Effect of Local Resonance in Acoustic Metamaterials
下载PDF
导出
摘要 针对传统的声学超材料存在降噪频率窄、造价成本过高、实现难度大等诸多问题,提出一种带柔性薄膜结构的Helmholtz共振腔声学超材料结构,以局域共振耦合效应现象为出发点,推导出Helmholtz共振腔和柔性薄膜的数学模型。运用COMSOL Multiphysics软件对模型进行仿真分析,研究表明,该结构产生了2个局域共振峰值。为了实现对声学超材料消声频带的控制,向薄膜内注入液体。实验测试表明,当注液量从0增至35 mL时,薄膜峰值处的共振频率从612 Hz偏移到446 Hz,偏移量为166 Hz。所设计的局域共振声学超材料在频带范围内对低频噪声具有良好的控制效果,为声学超材料的设计提供了一种方法。 Traditional acoustic metamaterials face issues including narrow noise reduction frequency range,high cost,and difficulty in implementation.To address these problems,a Helmholtz resonant cavity acoustic metamaterial structure with a flexible thin film is proposed.Starting from the phenomenon of local resonance coupling effects,mathematical models of the Helmholtz resonant cavity and the flexible thin film are derived.These models are simulated and analyzed using COMSOL Multiphysics software.The results show that the structure produces two local resonance peaks.To achieve control over the noise reduction frequency band of the acoustic metamaterial,liquid is injected into the thin film.Experimental results show that when the injection volume increases from 0 to 35 mL,the resonance frequency of the thin film shifts from 612 Hz to 446 Hz,resulting in a displacement of 166 Hz.The designed local resonance acoustic metamaterial effectively controls low-frequency noise within the specified frequency band,providing a novel approach for the design of acoustic metamaterials.
作者 项兴华 雷怡俊 胡志明 刘金涛 XIANG Xinghua;LEI Yijun;HU Zhiming;LIU Jintao(Jinshuitan Hydroelectric Power Plant of State Grid Zhejiang Electric Power Co.,Ltd.,Lishui 323000,China;College of Civil Engineering,Zhejiang University of Technology,Hangzhou 310000,China)
出处 《压电与声光》 CAS 北大核心 2024年第4期586-590,共5页 Piezoelectrics & Acoustooptics
基金 国网浙江省电力有限公司科技项目“具有降低水路管道结露功能并具有节能降耗效果的复合涂层体系的开发与应用”(JYJO-2023-013)。
关键词 局域共振 声学超材料 噪声 Helmholtz共振腔 local resonance acoustic metamaterials noise Helmholtz resonant cavity
  • 相关文献

参考文献13

二级参考文献60

  • 1洪俊青,刘伟庆.地铁对周边建筑物振动影响分析[J].振动与冲击,2006,25(4):142-145. 被引量:75
  • 2Kushwaha M S, Halevi P, Dobrzynski L, et al. Acoustic Band-structure of Periodic Elastic Composites [ J ]. Physical Review Letters, 1993,71 ( 13 ) :2022-2025.
  • 3汪越胜.声带隙功能材料的科学问题及力学思考.固体力学若干新进展[A].第一届全国固体力学青年学者研讨会论文集[C].冯西桥等主编.北京:清华大学出版社,2006:323-342.
  • 4Chen A L, Wang Y S. Study on Band Gaps of Elastic Waves Propagating in One-dimensional Disordered Phononic Crystal[ J]. Physica B,2007, 392 ( 1-2 ) : 369 -378.
  • 5Kafesaki M, Economou E N. Multiple-scattering Theory for Three-dimensional Periodic Acoustic Composites[ J]. Physical Review B, 1999,60 (17) :11993-12001.
  • 6Yan Z Z, Wang Y S. Wavelet-based Method for Calculating Elastic Band Gaps of Two-dimensional Phononic Crystals [ J ]. Physical Review B, 2006,74:22430322.
  • 7Wang G, Wen J H, Liu Y Z, et al. Lumped-mass Method for the Study of Band Structure in Two-dimensional Phononic Crystals[ J]. Physical Review B,2004,69 : 18430218.
  • 8Khelif A, Aoubiza B, Mohammadi S, et al. Complete Band Gaps in Two-dimensional Phononic Crystal Slabs [ J ]. Physical Review E,2006,74: 0466104.
  • 9Mead D J. A General Theory of Harmonic Wave Propagation in Linear Periodic Systems with Multiple Coupling [ J ]. Journal of Sound and Vibration, 1973,27 ( 2 ) : 235 -260.
  • 10Achenbach J D. Wave Propagation in Elastic Solids [ M ]. Elsevier Science Ltd, 1975.

共引文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部