摘要
为解决现有基于无人机图像的虫害监控方法效率低效果差,且需要耗费大量人力物力的问题,研究基于深度学习构建了基于无人机的林业虫害检测框架,将浅层网络提取的特征信息传递到深层网络,并通过剪枝和批量归一化折叠对模型进行了轻量化改进。结果表明,训练过程中各模型趋于稳定时,改进后的YOLOv4模型平均准确率达97.38%,计算成本和存储需求较原始的YOLOv4已分别降低17.81个百分点和23.38%;平均检测正确率比改进前高12.75个百分点。
In order to solve the problem of low efficiency and poor effect of existing pest control methods,which required a lot of man⁃power and material resources,the research built a forest pest detection framework based on deep learning,which transferred the fea⁃ture information extracted from the shallow network to the deep network,and made lightweight improvements to the model through pruning and batch normalization folding.The results showed that,when each model tended to be stable during training,the average ac⁃curacy of the improved YOLOv4 model reached 97.38%,and compared with the original YOLOv4 model,the computing cost and stor⁃age requirements were reduced by 17.81 percent points and 23.38%,respectively.The average detection accuracy was 12.75 percent points higher than before.
作者
邱雅林
刘向龙
何小军
赵庆龙
贾存芳
QIU Ya-lin;LIU Xiang-long;HE Xiao-jun;ZHAO Qing-long;JIA Cun-fang(Qingyang Foresty and Grassland Science and Technology Promotion Station,Qingyang 745000,Gansu,China;Qingyang Forestry Research Institute,Qingyang 745099,Gansu,China;Beichuan Forest Farm of Ziwuling Forestry Bureau Hexui Branch,Qingyang 745400,Gansu,China)
出处
《湖北农业科学》
2024年第8期262-266,共5页
Hubei Agricultural Sciences
基金
中央财政林业科技推广示范项目(甘[2023]ZYTG 007号)
庆阳市科技计划项目(QY-STK-2022A-042)。
关键词
无人机
虫害监控
图像检测
YOLOv4模型
unmanned aerial vehicle(UAV)
pest control
image detection
YOLOv4 model