期刊文献+

基于三维面阵激光成像系统的目标跟踪算法研究

Research on Target Tracking Algorithm Based on Three-dimensional Array Laser Imaging System
下载PDF
导出
摘要 针对现有的RGB目标跟踪算法难以有效应对光线变化、尺度变化、遮挡等问题,文章提出了一种基于三维面阵激光成像系统的感知遮挡相关粒子滤波目标跟踪算法;首先提出基于Depth深度数据及其HOG特征的目标遮挡判断机制,然后融合相关最大似然估计粒子滤波算法形成目标预测-跟踪-校准-再检测的跟踪机制;与现有的目标跟踪算法进行对比实验的结果表明,基于三维面阵激光成像系统的感知遮挡相关粒子滤波目标跟踪算法可以很好地检测目标遮挡并进行目标跟踪,降低了光线变化带来的影响,在目标预测-跟踪-校准-再检测方面,计算量较小,实时性较好,精确度达到85.7%。 It is difficult for existing RGB target tracking algorithms to effectively cope with illumination changing and target occlusion,a sensing occlusion correlation particle filter target tracking algorithm based on three dimensional array laser imaging system is proposed.Firstly,the target occlusion judging mechanism based on depth information and histogram of oriented gradient(HOG) feature is presented.Then,the correlation maximum likelihood estimation particle filter algorithm is fused to form the target prediction-tracking-calibration-redetection tracking mechanism.Experimental results show that compared with existing tracking algorithms,the sensing occlusion correlation particle filter target tracking algorithm based on three dimensional array laser imaging system can well detect the target occlusion and target tracking,reduce the impact of illumination changing,and it has the advantages of the less calculation and better real-time performance in the target prediction-tracking-calibration-redetection,with a accuracy of 85.7%.
作者 翟亚宇 郝光耀 徐雅丽 刘玉奇 ZHAI Yayu;HAO Guangyao;XU Yali;LIU Yuqi(China Institute of Marine Technology and Economy,Beijing 100081,China)
出处 《计算机测量与控制》 2024年第8期236-242,249,共8页 Computer Measurement &Control
关键词 面阵激光成像系统 感知遮挡 相关最大似然估计粒子滤波 目标跟踪 array laser imaging system sensing occlusion correlation maximum likelihood estimation particle filter target tracking
  • 相关文献

参考文献1

二级参考文献11

  • 1王长军,朱善安.基于Mean Shift的目标平移与旋转跟踪[J].中国图象图形学报,2007,12(8):1367-1371. 被引量:10
  • 2Fukunaga K, Hostetler L D. The Estimation of the Gradient of a Density Function, with Applications in Pattern Recogni- tion[J]. IEEE Trans Information Theory, 1975,21 ( 1 ) : 32-40.
  • 3Cheng Y. Mean Shift, Mode Seeking and Clustering[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799.
  • 4Comaniciu D, Ramesh V, Meer P. Real-time Tracking of Non-rigid Objects Using Mean Shift[C]//Proc IEEE Conf on CVPR. [S. 1. ] : IEEE, 2000:142-149.
  • 5Comaniciu D,Ramesh V,Meer P. Kernel-based Object Tracking[J]. IEEE Trans on Pattern Analysis and Machine Intel- ligence, 2003,25(5) : 564-575.
  • 6Okuma K,Taleghani A,De Freitas N, et al. A Boosted Particle Flter:Multitarget Detection and Tracking[C]//Proc of the European Conference on Computer Vision. Prague: IEEE, 2004:28-39.
  • 7Maggio E,Cavallaro A. Multi-part Target Representation for Color Tracking[C]//Proe IEEE Int Conference on Image Processing (ICIP). Genoa: IEEE, 2005 : 729-732.
  • 8袁霄,王丽萍.基于MeanShift算法的运动人体跟踪[J].计算机工程与科学,2008,30(4):46-49. 被引量:27
  • 9张恒,李由,李立春,于起峰.基于显著性加权的Mean Shift跟踪方法[J].光学技术,2008,34(3):404-407. 被引量:10
  • 10胡铟,杨静宇.基于分块颜色直方图的MeanShift跟踪算法[J].系统仿真学报,2009,21(10):2936-2939. 被引量:22

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部