期刊文献+

Polar residual network model for assisting evaluation on rat myocardial infarction segment in myocardial contrast echocardiography

极坐标残差网络模型辅助诊断心肌声学造影所示大鼠心肌梗死节段
下载PDF
导出
摘要 Objective To investigate the value of polar residual network(PResNet)model for assisting evaluation on rat myocardial infarction(MI)segment in myocardial contrast echocardiography(MCE).Methods Twenty-five male SD rats were randomly divided into MI group(n=15)and sham operation group(n=10).MI models were established in MI group through ligation of the left anterior descending coronary artery using atraumatic suture,while no intervention was given to those in sham operation group after thoracotomy.MCE images of both basal and papillary muscle levels on the short axis section of left ventricles were acquired after 1 week,which were assessed independently by 2 junior and 2 senior ultrasound physicians.The evaluating efficacy of MI segment,the mean interpretation time and the consistency were compared whether under the assistance of PResNet model or not.Results No significant difference of efficacy of evaluation on MI segment was found for senior physicians with or without assistance of PResNet model(both P>0.05).Under the assistance of PResNet model,the efficacy of junior physicians for diagnosing MI segment was significantly improved compared with that without the assistance of PResNet model(both P<0.01),and was comparable to that of senior physicians.Under the assistance of PResNet model,the mean interpretation time of each physician was significantly shorter than that without assistance(all P<0.001),and the consistency between junior physicians and among junior and senior physicians were both moderate(Kappa=0.692,0.542),which became better under the assistance(Kappa=0.763,0.749).Conclusion PResNet could improve the efficacy of junior physicians for evaluation on rat MI segment in MCE images,shorten interpretation time with different aptitudes,also improve the consistency to some extent. 目的观察极坐标残差网络(PResNet)模型辅助评估心肌声学造影(MCE)所示大鼠心肌梗死(MI)节段的价值。方法将25只雄性SD大鼠随机分为MI组(n=15)及假手术组(n=10)。对MI组以无损伤线结扎冠状动脉左前降支制备MI大鼠模型,假手术组开胸后不予特殊处置;1周后采集存活大鼠左心室短轴切面基底水平和乳头肌水平MCE图像;由低年资与高年资超声科医师各2名独立阅片,观察有、无PResNet模型辅助下不同年资医师评估MI节段的效能、平均解读用时及结果一致性。结果高年资医师有、无PResNet模型辅助下评估效能差异均无统计学意义(P均>0.05)。模型辅助下,低年资医师评估MI节段效能与高年资医师相当,相比无辅助显著提高(P均<0.01)。模型辅助下各医师平均解读用时均较无辅助显著缩短(P均<0.001)。无辅助时低年资医师间、低年资与高年资医师间的一致性中等(Kappa=0.692、0.542),模型辅助下一致性均为较好(Kappa=0.763、0.749)。结论PResNet模型可提高低年资超声医师评估大鼠MCE中MI节段的效能,缩短解读用时,并在一定程度上提高判断一致性。
作者 SHEN Wenqian GUO Yanhui YU Bo CHEN Shuang LI Hairu WU Yan LI You DU Guoqing 沈文茜;郭延辉;于波;陈双;李海茹;吴言;李游;杜国庆(中山大学孙逸仙纪念医院超声科,广东广州510120;哈尔滨医科大学附属第二医院超声医学科,黑龙江哈尔滨150086;美国伊利诺伊大学斯普林菲尔德分校计算机系,美国伊利诺伊62703)
出处 《中国医学影像技术》 CSCD 北大核心 2024年第8期1130-1134,共5页 Chinese Journal of Medical Imaging Technology
基金 国家自然科学基金面上项目(82071948) 广东省自然科学基金面上项目(2022A1515011675)。
关键词 myocardial infarction deep learning ULTRASONOGRAPHY animal experimentation 心肌梗死 深度学习 超声检查 动物实验
  • 相关文献

参考文献3

二级参考文献22

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部