期刊文献+

基于ISSA-GRU-KDE的压气机轴承故障预警方法

A Fault Early Warning Method for Compressor Bearing based on ISSA-GRU-KDE
原文传递
导出
摘要 为了尽早发现燃气轮机压气机轴承在运行期间出现的故障,在传统门控循环单元(Gated Recurrent Unit,GRU)神经网络的基础上,采用改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)进行超参数优化,并结合核密度估计(Nuclear Density Estimation,KDE)提出了一种基于ISSA-GRU-KDE的故障预警方法。对压气机相关历史数据进行预处理和特征筛选,得到高质量数据集,以此建立基于ISSA-GRU的压气机正常轴承温度预测模型,利用预测残差作为故障预警阈值的选取标准,采用KDE拟合残差确定预警阈值,并通过滑动窗口分析消除干扰,最终实现了故障预警。结果表明:该方法相比SSA-GRU、GRU和SVR预测算法拥有更高的预测精度和泛化能力,且有效地监测了潜在故障隐患,能够提前数小时对压气机轴承进行故障预警。 In order to detect the failure of compressor bearings of gas turbines during operation as soon as possible,this paper used the improved sparrow search algorithm(ISSA)to perform hyperparameter optimization on the basis of the traditional gated recurrent unit(GRU)neural network.Combining with nuclear density estimation(KDE),a fault early warning method based on ISSA-GRU-KDE was proposed.The relevant historical data of the compressor was preprocessed and the feature screening was carried out to obtain a highquality data set,so as to establish the normal bearing temperature prediction model of the compressor of ISSA-GRU,use the prediction residual as the selection standard of the fault warning thresh-old,adopt the KDE ftting residual to determine the early warning threshold,eliminate the interference through sliding window analysis,and finally realize the fault warning.The results show that this method has higher prediction accuracy and generalization ability than SSA-GRU,GRU and SVR prediction algorithms,effectively monitors potential fault hidden dangers,and can warn the compressor bearing fault several hours in advance.
作者 王祺昌 黄伟 张剑飞 WANG Qichang;HUANG Wei;ZHANG Jianfei(School of Automation Engineering,Shanghai University of Electric Power,Shanghai,China 200090;Huaneng Yuhuan Power Plant Co.,Ltd.,Taizhou,China 318000)
出处 《热能动力工程》 CAS CSCD 北大核心 2024年第7期165-173,共9页 Journal of Engineering for Thermal Energy and Power
基金 国家自然科学基金(52006131) 国家电网公司华东分部科技项目(H2021-111)。
关键词 燃气轮机 压气机轴承 故障预警 麻雀搜索算法 门控循环单元神经网络 核密度估计 gas turbine compressor bearings fault warning sparrow search algorithm gated recurrent unit neural network kernel density estimation
  • 相关文献

参考文献10

二级参考文献111

  • 1王家怡,高红均,刘友波,刘俊勇,袁晓冬,贺帅佳.考虑风电不确定性的交直流混合配电网分布式优化运行[J].中国电机工程学报,2020,40(2):550-563. 被引量:39
  • 2陈仁贵,陶月.燃气轮机进气系统结霜分析及对策[J].热能动力工程,2005,20(6):647-649. 被引量:14
  • 3李建强,刘吉臻,张栾英,牛成林.基于数据挖掘的电站运行优化应用研究[J].中国电机工程学报,2006,26(20):118-123. 被引量:62
  • 4Bancalari E,Chan P,Diakunchak I S.Advanced hydrogen gas turbine development program[C]//ASME Turbo Expo 2007:Power for Land,Sea,and Air.American Society of Mechanical Engineers,2007:977-987.
  • 5Advanced IGCC/H2 Gas Turbine Development[R]. European Commission:Framework Programmes for Research and Technological Development,2006.
  • 6EU Technology Platform,Recommendations for RTD,support actions and international collaboration priorities within the next FP7 energy work program in support of deployment of CCS in European [R]. European Commission:The EU Technology Platform for Zero Emission Fossil Fuel Power Plants,2008.
  • 7Bemtgen J.FP7 Energy-Call 2008 information and brokerage Day,FP7 innovation and energy technology[R]. European Commission:Framework Programmes for Research and Technological Development,2008.
  • 8Chen W,Ren J,Jiang H.Effect of turning vane configurations on heat transfer and pressure drop in a ribbed internal cooling system[J].Journal of Turbomachinery,2011,133(4):041012.
  • 9Xiang W,Chen S,Xue Z,et al.Investigation of coal gasification hydrogen and electricity co-production plant with three-reactors chemical looping process [J].International Journal of Hydrogen Energy,2010,35(16):8580-8591.
  • 10Wan K,Zhang S,Wang J,et al.Performance of humid air turbine with exhaust gas expanded to below ambient pressure based on microturbine[J].Energy Conversion and Management,2010,51(11):2127-2133.

共引文献269

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部