摘要
为了尽早发现燃气轮机压气机轴承在运行期间出现的故障,在传统门控循环单元(Gated Recurrent Unit,GRU)神经网络的基础上,采用改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)进行超参数优化,并结合核密度估计(Nuclear Density Estimation,KDE)提出了一种基于ISSA-GRU-KDE的故障预警方法。对压气机相关历史数据进行预处理和特征筛选,得到高质量数据集,以此建立基于ISSA-GRU的压气机正常轴承温度预测模型,利用预测残差作为故障预警阈值的选取标准,采用KDE拟合残差确定预警阈值,并通过滑动窗口分析消除干扰,最终实现了故障预警。结果表明:该方法相比SSA-GRU、GRU和SVR预测算法拥有更高的预测精度和泛化能力,且有效地监测了潜在故障隐患,能够提前数小时对压气机轴承进行故障预警。
In order to detect the failure of compressor bearings of gas turbines during operation as soon as possible,this paper used the improved sparrow search algorithm(ISSA)to perform hyperparameter optimization on the basis of the traditional gated recurrent unit(GRU)neural network.Combining with nuclear density estimation(KDE),a fault early warning method based on ISSA-GRU-KDE was proposed.The relevant historical data of the compressor was preprocessed and the feature screening was carried out to obtain a highquality data set,so as to establish the normal bearing temperature prediction model of the compressor of ISSA-GRU,use the prediction residual as the selection standard of the fault warning thresh-old,adopt the KDE ftting residual to determine the early warning threshold,eliminate the interference through sliding window analysis,and finally realize the fault warning.The results show that this method has higher prediction accuracy and generalization ability than SSA-GRU,GRU and SVR prediction algorithms,effectively monitors potential fault hidden dangers,and can warn the compressor bearing fault several hours in advance.
作者
王祺昌
黄伟
张剑飞
WANG Qichang;HUANG Wei;ZHANG Jianfei(School of Automation Engineering,Shanghai University of Electric Power,Shanghai,China 200090;Huaneng Yuhuan Power Plant Co.,Ltd.,Taizhou,China 318000)
出处
《热能动力工程》
CAS
CSCD
北大核心
2024年第7期165-173,共9页
Journal of Engineering for Thermal Energy and Power
基金
国家自然科学基金(52006131)
国家电网公司华东分部科技项目(H2021-111)。
关键词
燃气轮机
压气机轴承
故障预警
麻雀搜索算法
门控循环单元神经网络
核密度估计
gas turbine
compressor bearings
fault warning
sparrow search algorithm
gated recurrent unit neural network
kernel density estimation