期刊文献+

基于深度学习的智能车辆扫描系统分析

Analysis of Intelligent Vehicle Scanning System Based on Deep Learning
下载PDF
导出
摘要 阐述基于深度学习的智能车辆扫描系统为降低深层卷积神经网络的计算消耗,通过网络模型进行优化,以较为轻量的网络结构取得较高的车辆识别精度,从而提升对车辆的识别速度和识别精度。 This paper expounds the intelligent vehicle scanning system based on deep learning.In order to reduce the computational consumption of deep convolutional neural networks,the network model is optimized to achieve high vehicle recognition accuracy with a relatively lightweight network structure,thereby improving the recognition speed and accuracy of vehicles.
作者 赵圆圆 何进英 戴钰萌 董育辰 吴俊豪 ZHAO Yuanyuan;HE Jinying;DAI Yumeng;DONG Yuchen;WU Junhao(Zhanjiang University of Science and Technology,Guangdong 524088,China)
机构地区 湛江科技学院
出处 《集成电路应用》 2024年第7期274-276,共3页 Application of IC
基金 2023年度广东省“攀登计划”项目(pdjh2023b0787) 2022年度湛江科技学院本科教学质量与教学改革工程项目(ZLGC-20225) 2021年度湛江科技学院品牌提升计划项目(PPJH2021008)。
关键词 监控系统 智能筛选 智能车辆扫描系统 实时监测 monitoring system intelligent screening intelligent vehicle scanning system real-time monitoring
  • 相关文献

参考文献3

二级参考文献34

  • 1王永骥 涂健.神经元网络控制[M].北京:机械工业出版社,1999..
  • 2Randall S Sexton, Robert E Dosey, John D Johnson. Toward global optimization of network: A comparison of the genetic algorithm and back propagation. Decision Support Systems, 1998. 22:171 - 185.
  • 3Randall S Sexton, Jatinder N D Gupta.Comparative evaluation of genetic algorithm and back propagation for training neural networks. Information Sciences , 2000. 129:45 - 59.
  • 4Randall S Sexton, Robert E Dorsey, John D Johnson.Optimization of neural network: A comparative analysis of the genetic algorithm and simulated annealing. European Journal of Operational Research, 1999. 114:589 - 601.
  • 5M Mandischer. A comparison of evolution strategies and back propagation for neural network training. Neurocomputing, 2002. 42:87 - 117.
  • 6Randall S Sexton, Baharam Alidaee, Robert E Dorsey,John D Johnson. Global optimization for artificial neural networks: A tabu search application. European Journal of Operation Reseach, 1998. 106: 570-584.
  • 7阎平凡 张长水.人工神经网络与枇拟进化计算[M].清华大学出版社,2001.10-39.
  • 8阎平凡.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2001..
  • 9李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用,1997,14(4):613-615. 被引量:535
  • 10王凌,郑大钟.前向网络的两种混合学习策略[J].清华大学学报(自然科学版),1998,38(9):95-97. 被引量:10

共引文献1752

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部