摘要
研究了求解Landau-Lifshitz-Slonczewski方程的一阶向后Euler有限元全离散算法,使得数值解可近似满足单位长度的非凸约束,并得到了精确解和数值解关于磁化强度在L2-范数下的最优误差估计.
This paper studies the first-order backward Euler finite element fully discrete algorithm for solving the Landau-Lifshitz-Slonczewski equation,which makes the numerical solution approximately satisfy the non-convex constraint of unit length.Meanwhile,the optimal error estimates of magnetization under L2-norm are obtained for both exact and numerical solutions,respectively.
作者
赵云丹
ZHAO Yundan(College of Mathematics and Physics,Wenzhou University,Wenzhou,China 325035)
出处
《温州大学学报(自然科学版)》
2024年第3期1-12,共12页
Journal of Wenzhou University(Natural Science Edition)