摘要
目的基于临床数据分析慢性阻塞性肺疾病(COPD)患者频繁急性加重住院的危险因素,并构建预测模型,为临床预防和治疗提供理论基础。方法收集2013年1月1日至2023年5月1日在成都市第三人民医院住院的COPD患者25638例,根据纳排标准,纳入11315例,分析其临床特征,采用多因素Logistic回归模型分析频繁急性加重住院患者的危险因素,运用列线图模型预测患者频繁急性加重住院的风险,利用受试者工作特征曲线下面积评价模型效能。结果频繁急性加重住院的COPD患者中男性(P<0.001)、年龄(P<0.001)、居住城镇(P<0.001)、吸烟(P<0.001)、住院天数(P<0.001)、总费用(P<0.001)、抗菌药物费用(P<0.001)、糖尿病(P=0.003)、呼吸衰竭(P<0.001)、心脏病(P<0.001)、使用全身糖皮质激素(P<0.001)、白细胞计数(P<0.001)、中性粒细胞百分比(P<0.001)、C-反应蛋白(P<0.001)、总胆固醇(P<0.001)、B型钠尿肽(P<0.001)均显著高于非频繁急性加重组。多因素Logistic回归分析显示,年龄、居住城镇、吸烟史、糖尿病、心脏病、铜绿假单胞菌、使用全身糖皮质激素、抗菌药物、呼吸衰竭、白细胞升高、总胆固醇升高、B型钠尿肽升高是患者发生频繁急性加重住院的独立危险因素。根据危险因素构建患者频繁急性加重住院的列线图模型,受试者工作特征曲线下面积为0.899(95%CI=0.892~0.905),敏感度为85.30%,特异度为79.80%。结论吸烟、心脏病、使用糖皮质激素、铜绿假单胞菌感染、年龄、低体重指数、B型钠尿肽升高是COPD患者发生频繁急性加重住院的危险因素。根据危险因素构建的预测模型对患者频繁急性加重住院风险进行预测,可为患者的治疗和相关危险因素调整提供理论支持。
Objective To identify the risk factors of patients with frequent acute exacerbations of chronic obstructive pulmonary disease(AECOPD)and construct a prediction model based on the clinical data,providing a theoretical basis for the clinical prevention and treatment.Methods A total of 25638 COPD patients admitted to the Department of Respiratory and Critical Care Medicine,the Third People’s Hospital of Chengdu from January 1,2013 to May 1,2023 were selected.Among them,11315 patients were included according to the inclusion and exclusion criteria,and their clinical characteristics were analyzed.Multivariate Logistic regression was carried out to identify the risk factors for frequent AECOPD.A nomogram model was utilized to quantify the risk of acute exacerbation,and the performance of the prediction model was assessed based on the area under the receiver operating characteristic(ROC)curve.Results In the patients with frequent AECOPD,male percentage(P<0.001),age(P<0.001),urban residence(P<0.001),smoking(P<0.001),length of stay(P<0.001),total cost(P<0.001),antibiotic cost(P<0.001),diabetes(P=0.003),respiratory failure(P<0.001),heart disease(P<0.001),application of systemic glucocorticoids(P<0.001),white blood cell count(P<0.001),neutrophil percentage(P<0.001),C-reactive protein(P<0.001),total cholesterol(P<0.001),and brain natriuretic peptide(BNP)(P<0.001)were all higher than those in the patients with infrequent AECOPD.Multivariate Logistic regression analysis revealed that age,urban residence,smoking,diabetes,heart disease,Pseudomonas aeruginosa infection,application of systemic glucocorticoids,antibiotics,respiratory failure,and elevated white blood cell count,total cholesterol,and BNP were independent risk factors for hospitalization due to frequent AECOPD.A nomogram model of hospitalization due to frequent AECOPD was constructed according to risk factors.The ROC curve was established to evaluate the performance of the model,which showed the area under the ROC curve of 0.899(95%CI=0.892-0.905),the sensitivity of 85.30%,and the specificity of 79.80%.Conclusions Frequent AECOPD is associated with smoking,heart disease,application of systemic glucocorticoids,Pseudomonas aeruginosa infection,age,low body mass index,and elevated BNP.Predicting the risks of hospitalization due to frequent AECOPD by the established model can provide theoretical support for the treatment and risk factor management of the patients.
作者
付玉芬
牟婷
何翔
吴德洪
李国平
FU Yufen;MOU Ting;HE Xiang;WU Dehong;LI Guoping(Department of Respiratory and Critical Care Medicine,Affiliated Hospital of Southwest Medical University,Luzhou,Sichuan 646000,China;Laboratory of Allergy and Precision Medicine,Chengdu Institute of Respiratory Health,Chengdu 610031,China;Branch of National Clinical Research Center for Respiratory Disease,Department of Respiratory and Critical Care Medicine,The Third People’s Hospital of Chengdu,Chengdu 610031,China;Department of Respiratory and Critical Care Medicine,Longchang People’s Hospital,Neijiang,Sichuan 642150,China)
出处
《中国医学科学院学报》
CAS
CSCD
北大核心
2024年第4期519-527,共9页
Acta Academiae Medicinae Sinicae
基金
国家自然科学基金(82370022、82370023)
成都市科技局重大科技应用示范项目(2021-YF09-00102-SN)
成都市高水平临床重点专科建设项目(ZX20201202020)
成都市医学科研课题(2021011)。
关键词
慢性阻塞性肺疾病
频繁急性加重
危险因素
预测模型
列线图
chronic obstructive pulmonary disease
frequent acute exacerbations
risk factors
prediction model
nomogram