摘要
针对智能电网中的窃电检测问题,通过分析用户日用电量,发现正常用户用电具有季节波动和假期关联特性,窃电用户呈现杂乱无序状态。为此,提出了一种基于马尔可夫转移场的一维到二维图像转换方法,从多个时间尺度挖掘用电特征,再利用引入残差模块的卷积神经网络进行窃电用户识别。在国家电网提供的数据集上进行实验,所提方法具有94.31%的准确率,验证了其有效性和可行性。
To address the problem of electricity theft detection in smart grids,this paper proposes a method based on Markov transfer field for one-dimensional to two-dimensional image conversion.By analyzing daily electricity usage of clients,it is found that normal clients have seasonal fluctuation and holiday correlation characteristics,while electricity theft clients show disordered states.The proposed method mines electricity usage features from multiple time scales,and then uses convolutional neural networks with residual modules for electricity theft client identification.Experiments are conducted on a dataset provided by the State Grid Corporation of China,and the proposed method achieves an accuracy of 94.31%,which verifies its effectiveness and feasibility.
作者
赵艳龙
柏维
雷江平
汪卓俊
杨勇胜
蒋钟
熊兰
ZHAO Yanlong;BAI Wei;LEI Jiangping;WANG Zhuojun;YANG Yongsheng;JIANG Zhong;XIONG Lan(State Grid Zhejiang Electric Power Co.,Ltd.Anji County Power Supply Company,Huzhou 313300,China;State Key Laboratory of Power Transmission Equipment Technology(Chongqing University),Chongqing 400044,China;State Grid Zhejiang Electric Power Co.,Ltd.Huzhou Power Supply Company,Huzhou 313300,China)
出处
《电工电能新技术》
CSCD
北大核心
2024年第8期78-86,共9页
Advanced Technology of Electrical Engineering and Energy
基金
国家自然科学基金项目(52077012)。
关键词
窃电检测
马尔可夫转移场
深度残差网络
图像识别
electricity theft detection
Markov transition field
deep residual network
image recognition