期刊文献+

冲击力作用下种植体周围骨动态力学响应的数值模拟

Dynamic Mechanical Response of the Peri-Implant Bone Structure Subjected to Impact Load:A Numerical Study
下载PDF
导出
摘要 目的研究种植体周围骨结构在冲击力作用下的动态力学响应和损伤特征。方法建立种植体周围骨微观结构的有限元模型,对刚体施加初始速度模拟冲击加载,采用应力失效准则,编写用户材料子程序对模型进行失效判断,分析冲击力作用下骨结构的应力变化及损伤状况。结果冲击力作用后,皮质骨应力迅速达到峰值(16.01 MPa),而种植体底端骨小梁应力值在冲击后0.1μs达到应力峰值(5.85 MPa);冲击作用会形成应力波在骨结构内传播,骨结构损伤随时间发生变化;冲击能量可被骨小梁通过变形而缓冲和耗散,骨小梁应力达到屈服极限后出现损伤和破坏,而皮质骨在冲击作用下未出现损伤破坏。结论对于冲击损伤患者,应更加重视骨小梁的结构变化。所建数值模型能将骨的结构力学性能和自身几何特性结合,较好预测骨的冲击损伤情况。研究结果可为临床承受冲击损伤患者损伤评估和损伤后治疗提供参考。 Objective To investigate the dynamic mechanical responses and damage characteristics of periimplant bone structures subjected to impact load.Methods A finite element model of the peri-implant bone microstructure was established,and an initial velocity was applied to the rigid body to simulate the impact load.A stress failure criterion was employed and a user-material subroutine was developed to assess failure.Subsequently,bone damage after the impact load was analyzed according to the material subroutine.Results After the impact load,the stress on the cortical bone increased rapidly,reaching a peak value(16.01 MPa)immediately.In contrast,the stress on the trabecular bone at the bottom of the implant reached its peak value(5.85 MPa)at 0.1μs.The impact load resulted in stress waves that propagated and diffused within the bone structure,causing changes in the bone structure damage over time.The generated impact energy could be absorbed and dissipated by the trabecular bone through deformation.The deformed trabecular bone experienced damage and failure upon reaching the yield limit,whereas the cortical bone did not experience damage or failure under an impact load.Conclusions Structural changes in the trabecular bone should be considered in patients with impact damage.The numerical model established in this study can effectively predict bone impact damage 718 by combining the structural mechanical properties and geometric characteristics of the bones.These findings can serve as a reference for assessing bone damage and post-damage treatment in patients subjected to impact loads in clinical practice.
作者 马新扬 刁晓鸥 侯兵 王丹杨 MA Xinyang;DIAO Xiaoou;HOU Bing;WANG Danyang(College of Stomatology,Xi’an Medical University,Xi’an 710021,China;College of Stomatology,the Air Force Military Medical University,Xi’an 710032,China;School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China)
出处 《医用生物力学》 CAS CSCD 北大核心 2024年第4期718-723,共6页 Journal of Medical Biomechanics
基金 国家自然科学基金项目(11672327) 陕西省教育厅青年创新团队科学研究计划项目(23JP157) 西安医学院博士科研启动项目(2023BS37)。
关键词 冲击力 种植体 应力分布 冲击能量 有限元分析 impact load dental implants stress distribution impact energy finite element analysis
  • 相关文献

参考文献6

二级参考文献65

  • 1周艺群,吴汉江.三种GBR膜材料的比较研究[J].现代口腔医学杂志,2004,18(5):418-421. 被引量:8
  • 2Lee K S.Estimation of the incidence of head injury in Korea:an approximation based on national traffic accident statistics.J Korean Med Sci,2001,16:342–346.
  • 3Rosenfeld J V,McDermott F T,Laidlaw J D,et al.The preventability of death in road traffic fatalities with head injury in Victoria,Australia.J Clin Neurosci,2000,7:507–514.
  • 4May P R,Fuster J M,Haber J,et al.Woodpecker drilling behavior--an endorsement of the rotational theory of impact brain injury.Arch Neurol-Chicago,1979,36:370–373.
  • 5Darwin C.The Origin of Species by Means of Natural Selection.6th ed.London:Senate,1872.
  • 6Sielmann H.My Year with the Woodpeckers.London:Barrier and Rockliff,1959.139.
  • 7Gibson L J.Woodpecker pecking:how woodpeckers avoid brain injury.J Zool,2006,270:462–465.
  • 8Oda J,Sakamoto J,Sakano K.Mechanical evaluation of the skeletal structure and tissue of the woodpecker and its shock absorbing system.JSME Int J Ser A,2006,49:390–396.
  • 9May P R,Fuster J M,Newman P,et al.Woodpeckers and head injury.Lancet,1976,1:454–455.
  • 10Wang L,Cheung J T,Pu F,et al.Why do woodpeckers resist head impact injury:a biomechanical investigation.PLoS ONE,2011,6:e26490.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部