摘要
新型电力系统的调控运行面临规模及随机性升高、海量多元资源协同困难等难题,现有传统优化和人工经验的调控手段难以应对。以强化学习为代表的决策智能技术在表征能力和决策速度方面具备显著优势,但在应用中存在诸多关键瓶颈。而人机混合增强智能(hybrid human-machine intelligence,HHMI)技术具有突破这些瓶颈、支撑高效智能调控的巨大潜力。目前HHMI理论研究尚处于初期,应用不足。为挖掘HHMI的潜力并探索其应用方案,基于新型电力系统调控与应急调整的实际需求,分析决策智能的优势与局限,在此基础上,论述HHMI的总体框架、关键技术、应用方案以及在实际应用中面临的关键问题,并对其未来的实践进行展望,可为HHMI在新型电力系统调控中的研究与应用提供思路。
The dispatch and operation of next-era power system faces challenges such as increased system scale and randomness,and difficulty in coordinating massive and diverse resources.Existing optimization-based and manual dispatch methods are difficult to tackle these challenges.Although decision intelligence represented by reinforcement learning has significant advantages in representation capability and decision speed,its application in power systems still faces critical bottlenecks.The hybrid human-machine intelligence(HHMI)has great potential to break through these bottlenecks and support the efficient and intelligent system dispatch and adjustments.At present,the research on HHMI is still in its infancy and its application lacks.To explore the potential and applications of HHMI,considering the needs of power system dispatch and adjustments,the advantages and limitations of decision intelligence are analyzed.On this basis,the overall framework,key methods,application solutions,and key problems in the practical application of HHMI are discussed,and its future practices are prospected.This provides ideas for the research and application of HHMI in the dispatch and control of next-era power systems.
作者
李鹏
黄文琦
梁凌宇
戴珍
曹尚
车亮
涂春鸣
LI Peng;HUANG Wenqi;LIANG Lingyu;DAI Zhen;CAO Shang;CHE Liang;TU Chunming(Digital Grid Research Institute,China Southern Power Grid,Guangzhou 510000,Guangdong Province,China;College of Electrical and Information Engineering,Hunan University,Changsha 410082,Hunan Province,China)
出处
《中国电机工程学报》
EI
CSCD
北大核心
2024年第16期6347-6366,I0007,共21页
PROCEEDINGS OF THE CHINESE SOCIETY FOR ELECTRICAL ENGINEERING
基金
国家重点研发计划项目(2022YFB2403500)
南方电网数字电网研究院科技项目(670000KK52220002)。
关键词
人机混合
人在回路
人机交互
电力系统调度
电网运行控制
智能决策
强化学习
hybrid human-machine
human-in-the-loop
human-computer interaction
power system dispatch
grid operation&control
intelligent decision
reinforcement learning