期刊文献+

支持向量机在供水管网漏水探测中的数据分析及应用探究

Data Analysis and Application Exploration of Support Vector Machine in Leakage Detection of Water Supply Network
下载PDF
导出
摘要 供水管网漏水是一个普遍存在的问题,长期以来一直困扰着供水系统的安全和可靠性。随着人工智能技术的快速发展和广泛应用,越来越多的研究人员开始将其运用于供水管网漏水探测领域。管网中泄漏的定位信息可以利用管网中各个点的压力或流量值的分布进行确定,然而这是一个复杂的逆向工程问题,本文使用人工智能技术支持向量机(SVM)处理管网中的压力和流量值来获得管网泄漏的位置和大小信息。 Water leakage in water supply networks is a common problem that has been troubling the safety and reliability of water supply systems for a long time.With the rapid development and widespread application of artificial intelligence technology,more and more researchers are applying it to the field of water leakage detection in water supply networks.The location information of leaks in the pipeline network can be determined by utilizing the distribution of pressure or flow values at various points in the pipeline network.However,this is a complex reverse engineering problem.This article uses artificial intelligence technology support vector machine(SVM)to process the pressure and flow values in the pipeline network to obtain the location and size information of leaks in the pipeline network.
作者 宋扬 SONG Yang(Liaoning Headquarters of China Construction Materials Industry Geological Exploration Center,Shenyang 110004,China)
出处 《城市勘测》 2024年第4期101-104,共4页 Urban Geotechnical Investigation & Surveying
关键词 人工智能 支持向量机 供水管网 泄漏 探测分析 artificial intelligence support vector machine water supply network leak detection analysis
  • 相关文献

参考文献4

二级参考文献19

  • 1李树平,刘遂庆.城市给水系统[M].北京:中国建筑工业出版社,2012.
  • 2Mounce S R,Boxall J B,Machell J.Development and verification of an online artificial intelligence system for detection of bursts and other abnormal flows.[J]Journal of Water Resources Planning and Management,2010,136 (3):309.
  • 3Romano M,Kapelan Z,Savic D A.Bayesian-based online burst detection in water distribution systems[C]// Integrating Water Systems.London:CRC Press-Taylor & Francis Group,2010:331-337.
  • 4Nazif S,Karamouz M,Tabesh M,et al.Pressure management model for urban water distribution networks[J].Water Resources Management,2010,24:437.
  • 5Mounce S R,Mounce R B,Boxall J B.Identifying sampling interval for event detection in water distribution networks[J].Journal of Water Resources Planning and Management,2012,138(2):187.
  • 6Rossman LA.EPANET 2 user's manual[M].Cincinnati:National Risk Management Research Laboratory Office of Research and Development U S Environmental Protection Agency,2000.
  • 7Yang X S,Deb S.Cuckoo Search via levy flights[C]//World Congress on Nature & Biologically Inspired Computing.Coimbatore:IEEE,2009:210-214.
  • 8Valian E,Tavakoli S,Mohanna S,et al.Improved cuckoo search for reliability optimization problems[J].Computers & Industrial Engineering,2013,64(1):459.
  • 9Wang Q,Liu S,Wang H,et al.Multi-objective cuckoo search for the optimal design of water distribution systems[C]//Proceedings of the 2012 International Conference on Civil Engineering and Urban Planning,China.Yantai:American Society of Civil Engineers,2012:402-405.
  • 10Holland J H.Genetic algorithms and the optimal allocation of trials[J].SIAM Journal on Computing,1973,2(2):88.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部