摘要
为了提高无线通信系统中级联信道估计的精度和稳定性,提出一种新颖的级联信道估计方法,融合了压缩感知模型和深度学习技术。具体地,将信道估计问题转化为角度域上稀疏信号恢复问题,进一步设计了基于超分辨率网络的角度估计模块,结合多尺度注意力机制,提高相关矩阵的分辨率,获得精细的角度估计结果。最后逐径估计幅度,完成信道重建。仿真表明,所提算法在估计精度方面优于基准算法,导频数目较少时依旧表现出良好性能。
To improve the accuracy and stability of cascaded channel estimation in wireless communication systems,this paper proposes a novel method that combines compressed sensing models with deep learning techniques.Specifically,we transform the channel estimation problem into a sparse signal recovery problem in the angular domain.Furthermore,an angle estimation module based on a super-resolution network is designed combined with a multi-scale attention mechanism,which enhances the resolution of the correlation matrix and achieves accurate angle estimation results.Finally,the amplitudes are calculated path-by-path to reconstruct the cascaded channel.Simulation results demonstrate that the proposed algorithm outperforms baseline algorithms in terms of the estimation accuracy and works well even with a small number of pilot symbols.
作者
童伟强
刘辰尧
许文俊
TONG Weiqiang;LIU Chenyao;XU Wenjun(State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China;Peng Cheng Laboratory,Shenzhen 518066,China)
出处
《移动通信》
2024年第8期56-60,共5页
Mobile Communications
基金
国家自然科学基金项目“语义通信性能评估方法与验证系统”(62293485)。
关键词
智能反射面
信道估计
超分辨率
多尺度注意力
reconfigurable intelligent surfaces
channel estimation
super-resolution
multi-scale attention