期刊文献+

Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs

原文传递
导出
摘要 Oxidative therapies receive a limited antitumor efficiency due to the insufficient reactive oxygen species(ROS)levels at focal sites and the evolvement of antioxidant defense systems.Herein,we develop an albumin-based nanomedicine to co-deliver chlorin e6(Ce6)and COH-SR4(CS),which can simultaneously enhance the yield and lethality of intracellular ROS for amplified photodynamic therapy(PDT).In which,CS acts as both an activator of AMP-activated protein kinase(AMPK)and an inhibitor of glutathione S-transferases(GSTs).Benefiting from it,the prepared HSA-Ce6@COH-SR4(HCCS)enables positive feed-back uptake by promoting AMPK phosphorylation,leading to rapid and extensive tumor accumulation of drugs.As a result,HCCS obviously increases the ROS production to elevate intracellular oxidative stress.Furthermore,HCCS can inhibit GSTs to disturb the antioxidant defense system of tumor cells,intensifying the oxidative damage of ROS.Ultimately,the PDT of HCCS is significantly strengthened by improving the ROS yield and lethality,which greatly declines the proliferation of breast cancer in vivo.This study may open a window in the development of drug co-delivery system for enhanced oxidative therapy of tumors.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第8期481-485,共5页 中国化学快报(英文版)
基金 support of National Natural Science Foundation of China(No.52073140) the Guangdong Basic and Applied Basic Research Foundation(No.2022B1515020095).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部