期刊文献+

Multiple conductive network for KTi_(2)(PO_(4))_(3)anode based on MXene as a binder for high-performance potassium storage

原文传递
导出
摘要 KTi_(2)(PO_(4))_(3)is a promising anode material for potassium storage,but suffers from low conductivity and difficult balance between high capacity and good structural stability.Herein,the Ti_(3)C_(2)T_(x)MXene is used as a multifunctional binder to fabricate the KTi_(2)(PO_(4))_(3)electrode by the traditional homogenizing-coating method.The MXene nanosheets,together with the conductive agent super P nanoparticles,construct a multiple conductive network for fast electron/ion transfer and high electrochemical kinet-ics.Moreover,the network ensures the structural stability of the KTi_(2)(PO_(4))_(3)electrode during the de-intercalation/intercalation of 4 K^(+)ions,which is beneficial for simultaneously achieving high capacity and good cycle performance.Therefore,the MXene-bonded KTi_(2)(PO_(4))_(3)electrode delivers a reversible capacity of 255.2 mAh/g at 50 mA/g,outstanding rate capability with 132.3 mAh/g at 2 A/g,and ex-cellent cycle performance with 151.6 mAh/g at 1 A/g after 2000 cycles.This work not only suggests a high-performance anode material for potassium-ion batteries,but also demonstrates that the MXene is a promising binder material for constructing conductive electrodes in rechargeable batteries.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第8期539-544,共6页 中国化学快报(英文版)
基金 support by National Natural Science Foundation of China(No.U2004212).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部