期刊文献+

基于数值天气预报因子扩充和改进集成学习的高寒地区短期光伏功率预测

Short term photovoltaic power prediction in high-altitude and cold regions based on numerrical weather prediction factor expansion and improved ensemble learning
下载PDF
导出
摘要 高寒地区光伏系统因气象条件影响,其光伏功率表现出更显著的波动性。本文以黑龙江某光伏电站为例,提出基于数值天气预报(NWP)因子扩充和改进常规Stacking集成学习的高寒地区短期光伏功率预测方法。针对高寒地区光伏功率波动大的特点,引入NWP差分因子作为交叉特征,提升模型对天气变化的敏感性。随后,以极致梯度提升(XGBoost)和长短期记忆(LSTM)网络为基学习器,时间卷积网络(TCN)为元学习器,构建集成学习模型,并利用前向验证优化模型结构。最后,进行对比实验分析,结果表明本文所提方法具有更高的预测准确度和稳定性。 Due to meteorological conditions,photovoltaic systems in high-altitude and cold regions exhibit more significant fluctuations in their photovoltaic power.This article takes a photovoltaic power station in Heilongjiang as an example and proposes a short-term photovoltaic power prediction method for high-altitude and cold regions based on numerical weather prediction(NWP)factor expansion and improved conventional Stacking ensemble learning.In response to the large fluctuations in photovoltaic power in high-altitude and cold regions,the NWP differential factor is introduced as a cross feature to enhance the sensitivity of the model to weather changes.Subsequently,an ensemble learning model is constructed using extreme gradient boosting(XGBoost)and long short term memory(LSTM)network as base learners,and temporal convolutional network(TCN)as meta learners,and the model structure is optimized using forward validation.Finally,comparative experimental analysis is conducted,and the results show that the proposed method has higher prediction accuracy and stability.
作者 刘伟 杨凯宁 LIU Wei;YANG Kaining(School of Electrical and Information Engineering,Northeast Petroleum University,Daqing,Heilongjiang 163000)
出处 《电气技术》 2024年第8期1-10,17,共11页 Electrical Engineering
关键词 光伏功率短期预测 高寒地区 Stacking集成学习 数值天气预报(NWP)差分因子 前向验证 short term prediction of photovoltaic power high-altitude and cold regions Stacking ensemble learning numerical weather prediction(NWP)difference factor forward validation
  • 相关文献

参考文献11

二级参考文献186

  • 1董雷,周文萍,张沛,刘广一,李伟迪.基于动态贝叶斯网络的光伏发电短期概率预测[J].中国电机工程学报,2013,33(S1):38-45. 被引量:76
  • 2European Photovoltaic Industry Association. Global market outlook for photovoltaics 2014, 2018[R]. EPIA Report, 2014.
  • 3PVPS lEA. 2014 snapshot of global PV markets[R]. Report lEA PVPS T1-26, 2015.
  • 42014年光伏产业发展情况[EB/OL].[2015-02-15].http://www.nea.gov.cn/201502/15/c_133997454.htm.
  • 5GLASSLEY W, KLEISSL J, SHIU H, et al. Current state of the art in solar forecasting, final report: Appendix A California renewable energy forecasting, resource data and mapping[R]. California Institute for Energy and Environment, 2010.
  • 6PELLAND S, REMUND J, KLEISSL J, et al. Photovoltaic and solar forecasting: state of the art[R], lEA PVPS Task, 2013.
  • 7LONG H, ZHANG Z, SU Y. Analysis of daily solar power prediction with data-driven approaches [ J ]. Applied Energy, 2014, 126:29-37.
  • 8MARQUEZ R, COIMBRA C F M. Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database [ J ]. Solar Energy, 2011, 85(5) : 746-756.
  • 9ALMONACID F, PEREZ-HIGUERAS P J, FERNANDEZ E F, et al. A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator[J]. Energy Conversion and Management, 2014 (85) : 389-398.
  • 10LORENZ E, HURKA J, HEINEMANN D, et al. lrradiance forecasting for the power prediction of grid-connected photovoltaic systems[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2(1) 2-10.

共引文献457

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部