期刊文献+

A Survey of Crime Scene Investigation Image Retrieval Using Deep Learning

下载PDF
导出
摘要 Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.
出处 《Journal of Beijing Institute of Technology》 EI CAS 2024年第4期271-286,共16页 北京理工大学学报(英文版)
  • 相关文献

参考文献5

二级参考文献29

  • 1王勇,郭慧.基于支持向量机的轮胎标识点形状识别[J].图学学报,2014,35(2):274-279. 被引量:6
  • 2Zhang D S,Islam M M,Lu G J.A review on automatic image annotation techniques[J].Pattern Recognition,2012,45(1):346-362.
  • 3Chadha A,Mallik S,Johar R.Comparative study and optimization of feature extraction techniques for content based image retrieval[J].International Journal of computer application,2012,52(20):35-42.
  • 4肖睿,陆乃将,施鹏飞.鞋印匹配算法[C]//第十三届全国图像图形学学术会议,南京,2006:256-360.
  • 5Tang C Q,Dai X J.Automatic shoe sole pattern retrieval system based on image content of shoeprint[C]//Proceedings of International Conference on Computer Design and Application,Qinhuangdao,2010:602-605.
  • 6Rathinavel S,Arumugam S.Full shoe print recognition on pass band DCT and partial shoe print identification using overlapped block method for degraded images[J].International journal of computer application,2011,26(8):16-21.
  • 7Bradski G,Kaehler A.学习Open CV[M].北京:清华大学出版社,2009:155-161.
  • 8Hu M K.Visual pattern recognition by moment invariant[J].IRE Transaction On Information Theory,1962,8(2):179-187.
  • 9Sing S M,Hemachandran K.Content-Based image retrieval using Color Moment and Gabor texture feature[J].International journal of computer science issues,2012,9(1):229-309.
  • 10Roslan R,Jamil N.Texture feature extraction using 2-D Gabor filter[C]//Proceedings of IEEE Symposium on Computer Applications and Industrial Electronics,Kota Kinabalu,2012:173-178.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部