期刊文献+

基于神经网络的连续球压痕法预测钢轨钢拉伸力学性能

Prediction of Tensile Mechanical Property of Rail Steel by Continuous Ball indentation Method Based on NN
下载PDF
导出
摘要 神经网络在预测中具有灵活性和高效性,是当下机器学习领域的热门技术。强大的非线性建模能力使神经网络适用于各种复杂的数据模式。基于神经网络,采用连续球压痕法对RAT钢轨钢拉伸力学性能进行预测。以MATLAB软件和ANSYS软件联合仿真方式建立数据库,训练获得神经网络,在载荷位移和应力应变双重优化的前提下,通过遗传算法优化目标函数,得到预测结果。预测结果与拉伸试验结果误差较小,表明所提出的方法能够较好地预测钢轨钢的拉伸力学性能。 Neural network is a popular technology in the field of machine learning due to its flexibility and efficiency in prediction.Powerful nonlinear modeling capability makes neural network suitable for a wide range of complex data patterns.Based on the neural network,the continuous ball indentation method was used to predict the tensile mechanical property of RAT rail steel.The database was established by joint simulation of MATLAB software and ANSYS software,the neural network was trained,and the objective function was optimized by genetic algorithm under the premise of dual optimization of load displacement and stress strain,and the prediction result was obtained.The error between the prediction result and the tensile test result is small,which indicates that the proposed method can better predict the tensile mechanical property of rail steel.
作者 汤铮 马娟娟 李伟斌 戎嘉琪 Tang Zheng;Ma Juanjuan;Li Weibin
出处 《机械制造》 2024年第8期75-78,共4页 Machinery
关键词 神经网络 连续球 压痕 钢轨钢 拉伸 性能 Neural Network Continuous Ball Indentation Rail Steel Tensile Property
  • 相关文献

参考文献3

二级参考文献33

  • 1刘美华,李鸿琦,王静,王江宏,佟景伟.纳米压痕测量精度的影响因素[J].机械工程材料,2008,32(8):4-7. 被引量:10
  • 2崔航,陈怀宁,林泉洪.材料局部性能的球形压痕评价技术研究进展[J].材料导报,2007,21(9):92-95. 被引量:5
  • 3CUI H X, WANG W Q, LI A J, et al. Failure analysis on the brittle fracture of 20 steel thick wall and high pressure pipe in an ammonia synthesis unit [J]. Engineering Failure Analysis, 2010, 17 (6): 1359-1376.
  • 4CUI H X, WANG W Q, LI A J, et al. Study on the brittle fracture of the Q245 steel high pressure piping in an ammonia synthesis unit[C]//Proceedings of the 12th International Conference on Pressure Vessel Technology. J ej u Island : [s. n. ],2009.
  • 5PETHICA J B, OI.IVER W C. Mechanical properlies of nanometer volumes of material: Use of elastic response of small area indentations[C]// BARNETT D M, BRAVMAN J C, NIX W D, et al. Thin Films Stress and Mechanical Properties, MRS Symposium Proceedings. Pittsburgh..Es.n.7, 1989, 130: 13-23.
  • 6HAGGAG F M, LUCAS G E. Determination of ltiders strains and flow properties in steels from hardness/microhardness tests [J]. Metallurgical and Materials Transactions A, 1983, 14(8): 1607 1613.
  • 7HAGGAG F M. Field indentation microprobe for structural integrity evaluation: US, 4852397 [P]. 1989 08-01.
  • 8TABOR D. The hardness of metals EM2. Oxford: Clarendon Press, 1951: 1-9.
  • 9HAGGAG F M, NANSTAD R K, HUTTON J T, et al. Use of automated ball indentation to measure flow properties and estimate fracture toughness in metallic materials[C]//BRAUN A A, ASHBAUGH N E, SMITH F M. Applications of Automation Technology to Fatigue and Fracture Testing. Philadelphia: American Society for Testing and Materials, 1990:188-208.
  • 10HAGGAG F M. In-situ measurements of mechanical properties using novel automated ball indentation system[C] //CORWIN W R, HAGGAG F M, SERVER W I.. Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal Ammaling and Plant Life Extension. Philadctphia: American Society for Testing and Materials, 1993: 27-44.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部