摘要
在当下全球节能减排大趋势及我国“双碳”政策背景下,建筑设计越来越趋向于注重对环境的合理利用。建筑室内热舒适直接影响人们的活动与健康,也是导致建筑高能耗的主要因素之一。以哈尔滨金安商场为例建立参数化模型,通过CFD与EnergyPlus双平台进行风环境模拟、日照辐射模拟,评估建筑环境的热舒适,再利用机器学习预测与优化算法进行形态优化,总结被动式自然通风下的高大中庭空间屋顶形态热舒适耦合规律。根据优化结果,商场全年营业期热舒适时长可提升1288~1350 h;通过对比优化后的两种屋顶形式热舒适时长,得出凹型屋顶是较优选择。给出两种形态屋顶优化后的参数范围。提出的优化方法可对后续的商场及商业综合体中庭改造设计提供理论依据及方法指导。
Under the current global trend of energy saving and emission reduction and the“Dual-Carbon Goals”(realizing carbon peak before 2030 and carbon neutrality before 2060)in China,architectural design tends to pay attention to the rational use of environment.Indoor thermal comfort directly affects people’s activities and health,and is one of the main factors of building energy consumption.This paper takes Jin’an Shopping Mall in Harbin as an example to establish a parametric model.While the wind environment simulation and solar radiation simulation are conducted by CFD and EnergyPlus platforms to evaluate thermal comfort,machine learning and genetic algorithm are used to optimize the form of tall atrium space roof under passive natural ventilation.According to the results obtained after optimization,the thermal comfort time of the shopping mall can be increased by 1288 hours to 1350 hours during the annual operating period.By comparing the thermal comfort time of the two roof forms with optimization,the concave roof is the better choice,and the optimized parameter range of the two roof forms is given.The optimization method proposed is expected to provide theoretical basis and method guidance for the subsequent retrofitting design of the atrium of shopping malls and commercial complexes.
作者
许傲
张睿南
段浩琦
李雪顺
董宇(指导)
XU Ao;ZHANG Ruinan;DUAN Haoqi;LI Xueshun;DONG Yu(School of Architecture,Harbin Institute of Technology,Harbin 150001,China;Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology,Ministry of Industry and Information Technology,Harbin 150001,China)
出处
《建筑节能(中英文)》
CAS
2024年第8期81-87,共7页
Building Energy Efficiency
关键词
建筑空间形态
热舒适
性能模拟
机器学习
architectural spatial form
thermal comfort
performance simulation
machine learning