摘要
Multi‐object tracking in autonomous driving is a non‐linear problem.To better address the tracking problem,this paper leveraged an unscented Kalman filter to predict the object's state.In the association stage,the Mahalanobis distance was employed as an affinity metric,and a Non‐minimum Suppression method was designed for matching.With the detections fed into the tracker and continuous‘predicting‐matching’steps,the states of each object at different time steps were described as their own continuous trajectories.We conducted extensive experiments to evaluate tracking accuracy on three challenging datasets(KITTI,nuScenes and Waymo).The experimental results demon-strated that our method effectively achieved multi‐object tracking with satisfactory ac-curacy and real‐time efficiency.