期刊文献+

基于压电振动传感器的骨折愈合状态模拟实时检测系统

Real-Time Detection System for Simulating Fracture Healing Status Based on Piezoelectric Vibration Sensors
下载PDF
导出
摘要 为解决传统影像检查无法实时检测骨折愈合状态,以及植入式检测方法手术难度大、可能引起排斥反应的问题,设计了一种基于压电振动传感器的骨折愈合状态模拟实时检测系统。该系统主要包括5个部分:骨折愈合状态模拟、振动模块、振动信号调理模块、单片机控制模块和上位机。通过模拟环境采集骨折愈合状态的振动信号,然后通过单片机控制模块传输至上位机进行处理并实时检测。同时,对比分析朴素贝叶斯、决策树和随机森林集成学习几种不同算法在检测分类效果上的差异。结果表明,使用随机森林集成学习算法进行骨折愈合状态模拟的检测分类,响应时间不超过0.2 s,准确率达98.2%,这不仅保证了系统的实时性,而且提高了系统检测分类的准确性。 To address the issues of traditional imaging methods being unable to detect the healing status of fractures in real-time,as well as the difficulties and potential rejection reactions associated with implantable detection methods,a real-time fracture healing status simulation detection system based on a piezoelectric vibration sensor was designed.The system main includes five components:Fracture healing status simulation,vibration module,vibration signal conditioning module,microcontroller control module,and host computer.Vibration signals under different fracture healing states are collected in a simulated environment and then transmitted to the host computer for processing and real-time detection through the microcontroller control module.Additionally,a comparative analysis of several different algorithms including Naive Bayes,decision tree,and random forest ensemble learning was conducted to evaluate their effectiveness in detection and classification.The results indicate that using the random forest ensemble learning algorithm for fracture healing status simulation detection achieves a response time of no more than 0.2 s,with an accuracy of 98.2%.This not only ensures the real-time capability of the system but also enhances the accuracy of the detection and classification process.
作者 谢成花 陈向东 丁星 马立泰 XIE Chenghua;CHEN Xiangdong;DING Xing;MA Litai(School of Information Science&Technology,Southwest Jiaotong University,Chengdu,Sichuan 610031,China;Department of Orthopedics and Orthopedic Research Institute,West China Hospital,Sichuan University,Chengdu,Sichuan 610041,China)
出处 《自动化应用》 2024年第15期236-239,242,共5页 Automation Application
基金 国家重点研发计划资助项目(2023YFB3210200) 四川省重点研发计划资助项目(2023YFG0062)。
关键词 骨折愈合状态模拟 压电振动传感器 信号处理 实时检测 simulating fracture healing status piezoelectric vibration sensors signal processing real-time detection
  • 相关文献

参考文献6

二级参考文献28

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部