期刊文献+

基于深度学习的视频篡改检测方法

Video Tampering Detection Method Based on Deep Learning
下载PDF
导出
摘要 随着新一代信息技术的迅猛发展,视频图像处理的多媒体技术应用越发广泛,数字视频的真实性面临巨大挑战。对视频篡改问题进行了研究,提出了一种基于深度学习的检测方法,即将卷积神经网络(CNN)和长短期记忆网络(LSTM)相结合,融入哈希(Hash)算法,利用卷积神经网络提取特征值,输入至长短期记忆网络,通过全连接层Softmax提取时空特征构建了CNNH-LSTM融合网络模型。将该网络模型应用于直播类视频篡改检测分类,实验结果表明,该模型具有良好的特征提取能力、泛化能力,并具有较好的区分性,为视频篡改检测提供了一种新思路。 With the rapid development of the new generation of information technology,the application of multi-media technology for video or image processing is becoming more and more widespread,and the authenticity of digi-tal videos faces huge challenges.In this paper,a video tampering detection algorithm based on deep learning is pro-posed:the Convolutional Neural Network(CNN)is combined with the Long Short-Term Memory(LSTM)network,and the Hash algorithm is integrated,the features extracted by the convolutional neural network are input into the long-term and short-term memory network model,and the spatial and temporal features are extracted through the fully connected layer Softmax to construct CNNH-LSTM in the fusion model.By applying this network model to live video tampering detection and classification,the experimental results show that the model has good feature extraction capability generalization capability,and good distinguishing,providing a new method for video tamper detection.
作者 陈雪艳 梁大超 宋启东 王洪泰 CHEN Xueyan;LIANG Dachao;SONG Qidong;WANG Hongtai(College of Engineering,Inner Mongolia Minzu University,Tongliao 028043,China;Key Laboratory of Intelligent Manufacturing Technology,Inner Mongolia Minzu University,Tongliao 028043,China;Inner Mongolia Tongyuan New Energy Technology Co.,Ltd,Tongliao 028000,China)
出处 《内蒙古民族大学学报(自然科学版)》 2024年第4期52-55,共4页 Journal of Inner Mongolia Minzu University:Natural Sciences Edition
基金 国家自然科学基金项目(61440041) 内蒙古自治区青年科技英才项目(NJYT22051) 内蒙古自治区高等学校科学技术重点项目(NJZZ19144) 内蒙古自治区直属高校基本科研业务费项目(GXKY22045)。
关键词 神经网络 哈希算法 视频篡改 neural networks Hash algorithm video tampering
  • 相关文献

参考文献8

二级参考文献115

  • 1Mucedero A, Lancini R, Mapelli F. A novel hashing al- gorithm for video sequences [ C ]// Proceedings of the 2004 International Conference on Image Processing. Sin- gapore: IEEE Press, 2004, 4: 2239-2242.
  • 2De Roover C, De Vleeschouwer C, Lefebvre F, et al. Robust video hashing based on radial projections of key frames [ J ]. IEEE Transactions on Signal Processing, 2005, 53(10): 4020-4037.
  • 3Coskun B, Sankur B, Memon N. Spatio-temporal trans- form based video hashing [ J ]. IEEE Transactions on Multimedia, 2006, 8(6): 1190-1208.
  • 4Coskun B, Sankur B. Robust video hash extraction [C]// Proceedings of the 12th IEEE Signal Processing and Communications Applications Conference. Kusadasi (Turkey) : IEEE Press, 2004 : 2295-2298.
  • 5Zhou Xuebing, Schmucker M, Brown C. Perceptual has- hing of video content based on differential block similarity [ C ] // 2005 International Conference on Computational Intelligence and Security. Xi'an ( China ) : IEEE Press, 2005, 3802: 80-85.
  • 6Oostveen J C, Kalker T, Haitsma J. Visual hashing of digital video: applications and techniques [ C ] // Pro- ceedings of SPIE: Applications of Digital Image Processing XXIV. San Diego(USA) : SPIE Press, 2001, 4472: 121-131.
  • 7Walk S, Majer N, Schindler K, et al. New features and insights for pedestrian detection [ C ]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco (USA) : IEEE Press, 2010: 1030-1037.
  • 8Ying Long, Xu Changsheng, Guo Wen. extended MHT al- gorithm for multiple object tracking [ C ]// ICIMCS '12 Proceedings of the 4th International Conference on Internet Multimedia Computing and Service. New York: ACM, 2012: 75-79.
  • 9普云功.基于压缩域的视频关键帧提取算法研究[D].北京:北京交通大学,2009.
  • 10文振焜,朱为总,欧阳杰.一种鲁棒可区分的视频感知哈希算法[C]//第18届全国多媒体学术会议论文集.西安(中国):清华大学出版社,2009:38-43.

共引文献2610

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部