期刊文献+

ZnONP/g-C_(3)N_(4)柱撑结构复合材料构建及NO光氧化脱除研究

Fabrication of ZnO NP/g-C_(3)N_(4) column brace structure composites and study on NO photocatalytic oxidation removal performance
下载PDF
导出
摘要 随着现代工业的飞速发展,如何实现氮氧化物的有效脱除成为目前亟待解决的重要难题.本研究提出了一种在石墨相氮化碳(g-C_(3)N_(4))表面原位生长纳米氧化锌点阵构建柱撑结构复合材料策略,以实现在可见光下光氧化去除NO.通过离子吸附反应,成功制备了不同氧化锌颗粒负载量的ZnO NP/g-C_(3)N_(4)柱撑结构复合光氧化剂,并对其结构和电子特性进行了研究.结果表明,氧化锌纳米颗粒(ZnO NP)的引入改善了g-C_(3)N_(4)的团聚,提高了比表面积,暴露出更多活性位点.异质结构的构建改善了复合材料能带结构,促进了光生载流子的迁移及分离,光氧化性能显著提升.在可见光照射下质量分数为2.5%的ZnO NP/g-C_(3)N_(4)样品展现出了优异的光氧化性能,对NO体积分数为3×10^(-5)%以下的混合空气光氧化去除表现出优良的高效稳定性.本研究为高性能光氧化剂的设计与构建提供了有效策略,并为消除工业NO污染物提供了技术参考. With the rapid industrial development,air pollution and global climate change have become pressing issues.Addressing the effective removal of nitrogen oxides(NO_(x)),a major contributor to these problems,is crucial.Photo-oxidation technology emerges as a promising solution,offering a new,green method of NO_(x) removal.This technology stands out for its safety,cost-effectiveness,cleanliness,and cycle stability,making it an efficient approach to tackling NO_(x) emissions.In this study,we explore a novel strategy that involves the in-situ growth of ZnO nanodot arrays on surfaces of graphite-phase carbon nitride(g-C_(3)N_(4))to construct column-supported structure composites.These composites are designed for the photo-oxidation removal of NO under visible light.By employing an ion adsorption reaction,ZnO NP/g-C_(3)N_(4) column-supported structure composite photo-oxidizers were successfully synthesized with varying ZnO particle mass fractions of 1%,2.5%,and 5%,respectively.The investigation revealed that introducing ZnO NP significantly increases the specific surface area of the ZnO NP/g-C_(3)N_(4) composites compared to pure g-C_(3)N_(4) samples,which have a specific surface area of 31.092 m^(2)·g^(-1).Specifically,the 2.5%ZnO NP/g-C_(3)N_(4) composites exhibited a substantial increase to 58.063 m^(2)·g^(-1),while the 1%and 5%ZnO NP/g-C_(3)N_(4) composites reached 37.141 m^(2)·g^(-1) and 42.563 m^(2)·g^(-1),respectively.This enhancement in the specific surface area,attributed to the columnar support structure,addresses the stacking issue of the g-C_(3)N_(4) lamellae in the composites.The resulting structure is stretchier and fluffier,exposing a greater number of reactive sites.Furthermore,the construction of a heterostructure improves the energy band structure of the composites,facilitating the migration and separation of photogenerated carriers,which significantly enhances the photo-oxidation performance.During the NO photo-oxidation removal experiments,the ZnO NP/g-C_(3)N_(4) composites demonstrated a marked improvement in photo-oxidation efficiency compared to pure g-C_(3)N_(4).Notably,the 2.5%ZnO NP/g-C_(3)N_(4) composites achieved a 100%photo-oxidation removal rate of NO,maintaining an effective removal performance across different NO concentrations and exhibiting robust performance in five cycles of stability tests.This study provides an effective strategy for designing and constructing high-performance photo-oxidizers and provides a technical reference for eliminating industrial NO pollutants.In addition,our study introduces a method for the photo-oxidation removal of NO and inspires new approaches in the design and synthesis of composite photocatalysts.By modulating the composition and structure of these composites,their photo-oxidation performance can be further optimized to achieve more efficient and stable pollutant removal.This advancement holds significant implications for environmental protection and sustainable development.
作者 张博川 许磊 谢诚 孙永芬 叶千钧 刘燕芝 ZHANG Bochuan;XU Lei;XIE Cheng;SUN Yongfen;YE Qianjun;LIU Yanzhi(Faculty of Metallurgical and Energy Engineering,Kunming University of Science and Technology,Kunming 650093,China;National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology,Kunming University of Science and Technology,Kunming 650093,China;State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming University of Science and Technology,Kunming 650093,China)
出处 《工程科学学报》 EI CSCD 北大核心 2024年第11期2046-2054,共9页 Chinese Journal of Engineering
基金 国家自然科学基金资助项目(52374305,51864030) 国家重点研发计划资助课题(2023YFA1507703) 云南省基础研究重点项目(202101AS070023,202301AV070009)。
关键词 g-C_(3)N_(4) ZNO 纳米材料 光氧化 NO脱除 g-C_(3)N_(4) ZnO nanomaterials photooxidation NO removal
  • 相关文献

参考文献6

二级参考文献117

  • 1范博,孟宇,孙宇航.基于密相半干法脱硫工艺的氧化脱硝技术及应用[J].冶金管理,2020(21):33-34. 被引量:1
  • 2白玉洁,张爱丽,周集体.吸附剂再生技术的研究进展[J].辽宁化工,2012,41(1):21-24. 被引量:13
  • 3井立强,辛柏福,王德军,袁福龙,付宏刚,孙家锺吉林大学理论化学研究所.ZnO和TiO_2纳米粒子的光致发光性能及其与光催化活性的关系[J].高等学校化学学报,2005,26(1):111-115. 被引量:37
  • 4姚国建,韦鸣瑞,柳建龙,吕威,潘天才.球团竖炉烟气脱硫工程应用研究[J].工业安全与环保,2005,31(4):38-42. 被引量:2
  • 5Wang Y, Wang X, Antonietti M. Polymeric graphitic carbon nitride as heterogeneous organocatalyst : From photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angewandte Chemie-lnternational Edition, 2012, 51 : 68-89.
  • 6Wang X, Blechert S, Antonietti M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis[J]. ACS Catalysis, 2012, 2 (8): 1596-1606.
  • 7Liebig J. Uber einige stickstoff- verbindungen[J]. Annalen Der Pharmacie, 1834, 10 (1): 1-47.
  • 8Liu A Y, Cohen M L. Prediction of new low compressibility solids[J]. Science, 1989, 245 (4920): 841-842.
  • 9Teter D M, Hemley R J. Low-compressibility carbon nitrides[J]. Science, 1996, 271 (5245): 53-55.
  • 10Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8 ( 1 ): 76-80.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部