摘要
研究了带有权重边的无向图拓扑结构下的多智能体系统,提出了固定采样、事件触发和周期采样等策略来实现系统一致性。基于李雅普诺夫稳定性理论建立了数学模型,并进行了分析和仿真研究,结果表明:事件触发策略能成功消除系统中的芝诺行为,能确保在相应策略下实现多智能体系统一致性。
This study investigates multi-agent systems in weighted undirected graph topologies,addressing the consensus prob-lem through fixed-interval sampling,event-triggered,and periodic sampling strategies in such networks.Leveraging Lyapunov stability theory,a mathematical model has been established and thoroughly analyzed,along with simulation verification.The research reveals that the proposed event-triggered strategy eliminates Zeno behavior within the system,thereby ensuring con-sistent stability.Designed simulation experiments validate that multi-agent systems effectively achieve consensus under the corresponding strategies.
作者
赵舵舵
肖一凡
韩欣欣
ZHAO Duoduo;XIAO Yifan;HAN Xinxin(College of Big Data and Artificial Intelligence,Chizhou University,Chizhou 247000,China)
出处
《新乡学院学报》
2024年第6期10-15,共6页
Journal of Xinxiang University
基金
教育部大学生创新创业计划项目(202211306068,S202211306114,S202211306134)
安徽省优秀青年教师培育项目(YQYB2023059)
池州学院重点科研项目(CZ2023ZRZ04)
池州学院质量工程项目(2022XXSKC09)。
关键词
协同控制
李雅普诺夫V函数
周期采样
事件触发
仿真实验
模型创新
measurement error
Lyapunov V function
periodic sampling
event triggering
simulation experiments
model inno-vation