摘要
文章阐述水轮发电机组的常见故障类型,分析传统检修技术存在诊断精度低、人力依赖强等局限性,并提出一套基于生产大数据的水轮发电机组故障检修技术。通过搭建实验平台,对比传统检修技术和基于生产大数据的故障检修技术的故障检修性能。实验结果表明,基于生产大数据的故障检修技术可以显著提高故障检出率,降低误报率,缩短平均检修时间,节约检修成本。
This paper describes the common fault types of hydroelectric generating set,analyzes the limitations of traditional maintenance technology such as low diagnostic accuracy and strong manpower dependence,and puts forward a set of fault maintenance technology of hydroelectric generating set based on production big data.By setting up an experimental platform,the performance of the traditional maintenance technology and the fault maintenance technology based on production big data is compared.The experimental results show that the fault inspection technology based on production big data can significantly improve the fault detection rate,reduce the false positive rate,shorten the average inspection time and save the inspection cost.
作者
董佩宇
张文杰
Dong Peiyu;Zhang Wenjie(State Grid Gansu Power Company,Liujiaxia Hydropower Station,Linxia 731600)
出处
《现代制造技术与装备》
2024年第8期141-143,共3页
Modern Manufacturing Technology and Equipment
关键词
水轮发电机组
故障
检修技术
生产大数据
hydroelectric generating set
malfunction
maintenance technology
production big data