期刊文献+

基于生产大数据的水轮发电机组故障检修技术研究

Research on Fault Maintenance Technology for Hydroelectric Generating Set Based on Production Big Data
下载PDF
导出
摘要 文章阐述水轮发电机组的常见故障类型,分析传统检修技术存在诊断精度低、人力依赖强等局限性,并提出一套基于生产大数据的水轮发电机组故障检修技术。通过搭建实验平台,对比传统检修技术和基于生产大数据的故障检修技术的故障检修性能。实验结果表明,基于生产大数据的故障检修技术可以显著提高故障检出率,降低误报率,缩短平均检修时间,节约检修成本。 This paper describes the common fault types of hydroelectric generating set,analyzes the limitations of traditional maintenance technology such as low diagnostic accuracy and strong manpower dependence,and puts forward a set of fault maintenance technology of hydroelectric generating set based on production big data.By setting up an experimental platform,the performance of the traditional maintenance technology and the fault maintenance technology based on production big data is compared.The experimental results show that the fault inspection technology based on production big data can significantly improve the fault detection rate,reduce the false positive rate,shorten the average inspection time and save the inspection cost.
作者 董佩宇 张文杰 Dong Peiyu;Zhang Wenjie(State Grid Gansu Power Company,Liujiaxia Hydropower Station,Linxia 731600)
出处 《现代制造技术与装备》 2024年第8期141-143,共3页 Modern Manufacturing Technology and Equipment
关键词 水轮发电机组 故障 检修技术 生产大数据 hydroelectric generating set malfunction maintenance technology production big data
  • 相关文献

参考文献5

二级参考文献20

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部