摘要
基于光电检测的运动血氧饱和度(血氧)检测仪其性能在很大程度上受到光电容积脉搏波(PPG)信号中运动噪声的影响。本文提出一个针对运动血氧检测的算法,该算法通过完全自适应噪声集合经验模态分解联合多尺度排列熵构造运动噪声参考信号,并结合凸组合最小均方自适应滤波器消除PPG信号中的运动噪声,以计算动态血氧。测试结果表明,在模拟步行、慢跑状态下,本算法计算的血氧值与参考血氧值的平均绝对误差分别为0.05和0.07,平均绝对百分比误差分别为0.05%和0.07%,总体皮尔逊相关系数达到0.9712。实验结果证实,本文研究算法有效地降低了PPG信号中的运动伪影,有望应用于便携光电式脉搏血氧仪,以提高动态血氧测量的准确性。
The performance of a pulse oximeter based on photoelectric detection is greatly affected by motion noise(MA)in the photoplethysmographic(PPG)signal.This paper presents an algorithm for detecting motion oxygen saturation,which reconstructs a motion noise reference signal using ensemble of complete adaptive noise and empirical mode decomposition combined with multi-scale permutation entropy,and eliminates MA in the PPG signal using a convex combination least mean square adaptive filters to calculate dynamic oxygen saturation.The test results show that,under simulated walking and jogging conditions,the mean absolute error(MAE)of oxygen saturation estimated by the proposed algorithm and the reference oxygen saturation are 0.05 and 0.07,respectively,with means absolute percentage error(MAPE)of 0.05%and 0.07%,respectively.The overall Pearson correlation coefficient reaches 0.9712.The proposed scheme effectively reduces motion artifacts in the corrupted PPG signal and is expected to be applied in portable photoelectric pulse oximeters to improve the accuracy of dynamic oxygen saturation measurement.
作者
张林嘉
余小敏
林健
仇承恩
王铮先
ZHANG Linjia;YU Xiaomin;LIN Jian;CHOU Chengen;WANG Zhengxian(Key Laboratory of Biomedical Effect of Physical Field and Instrument,School of Electrical and Electronic Engineering,Chengdu University of Information Technology,Chengdu 610225,P.R.China;Chongqing Institute of Microelectronics and Microsystems,Beijing Institute of Techonology,Chongqing 401332,P.R.China;Sichuan Acad Medicine Science&Sichuan Province Peoples Hospital,Chengdu 610072,P.R.China)
出处
《生物医学工程学杂志》
EI
CAS
北大核心
2024年第4期818-825,共8页
Journal of Biomedical Engineering
基金
四川省科技计划重点研发项目(2023YFS0468)。
关键词
光电容积脉搏波
血氧饱和度
运动噪声
信号分解
噪声重构
Photoplethysmographic
Blood oxygen saturation
Motion noise
Signal decomposition
Noise reconstruction