期刊文献+

PCA-GWO-SVR机器学习用于边坡爆破振动速度峰值预测研究

PCA-GWO-SVR machine learning applied to prediction of peak vibration velocity of slope blasting
下载PDF
导出
摘要 针对复杂场地环境下传统经验公式预测精度不高的问题,提出了一种主成分分析(PCA)特征选取下基于灰狼优化支持向量回归机算法(PCA‐GWO‐SVR)的爆破振动速度峰值预测模型。以白鹤滩水电站右岸坝肩槽爆破开挖监测数据为依据,选取爆心距、单响药量、高程差、纵波波速、炮孔间距、炮孔排距作为输入参数,通过PCA的数据降维对特征值进行选取,将选取的6种特征降维后化为4种相关性更高的特征;使用灰狼优化算法(GWO)改进支持向量回归机(SVR)以获取最优参数;将参数输入到SVR模型中进行计算评估。研究结果表明:PCA‐GWO‐SVR算法对比萨道夫斯基公式,改进的萨道夫斯基公式,SVR,PCA‐SVR和GWO‐SVR的预测值和实测值的吻合效果更好,预测结果的准确度更高,更能有效地预测边坡爆破振动峰值,为边坡爆破施工安全控制提供帮助。 Aiming at the low accuracy of traditional empirical formulas in complex site environment,a predictive model for peak blasting vibration velocity based on grey wolf optimization support vector regression(PCA-GWO-SVR)with principal component analysis(PCA)feature selection is proposed.Based on the monitoring data of blasting excavation of dam abutment trough on the right bank of Baihetan Hydropower Station,the blasting center distance,maximum single-shot charge quantity,elevation difference,longitudinal wave velocity,bore spacing and bore row distance are selected as input parameters,and the characteristic values are selected by data dimension reduction of PCA,and the six selected features are dimensionally reduced to four characteristics with higher correlation.Support vector regression(SVR)is improved by grey wolf optimization algorithm(GWO)to obtain the optimal parameters.Parameters are input into the SVR model for evaluation.The research results show that the PCA-GWO-SVR algorithm has better agreement with the predicted values and the measured values of Sadowski formula,improved Sadowski formula,SVR,PCA-SVR,GWO-SVR.The predicted results are more accurate and can predict the peak value of blasting vibration of slope more effectively,which provides help for safety control of blasting construction of slope.
作者 范勇 胡名东 杨广栋 崔先泽 高启栋 FAN Yong;HU Ming-dong;YANG Guang-dong;CUI Xian-ze;GAO Qi-dong(Hubei Key Laboratory of Construction and Management in Hydropower Engineering,China Three Gorges University,Yichang 443002,China;College of Hydraulic&Environmental Engineering,China Three Gorges University,Yichang 443002,China;School of Highway,Chang’an University,Xi’an 710064,China)
出处 《振动工程学报》 EI CSCD 北大核心 2024年第8期1431-1441,共11页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(51979152,52209162) 湖北省高等学校优秀中青年科技创新团队计划项目(T2020005)。
关键词 爆破振动 主成分分析 灰狼优化算法 支持向量回归机 blasting vibration principal component analysis grey wolf optimization algorithm support vector regression
  • 相关文献

参考文献11

二级参考文献104

共引文献197

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部