期刊文献+

Broadband absorption performance of 3D-printed polyetheretherketone-based electromagnetic wave-absorbing composites

原文传递
导出
摘要 The rapid development of additive manufacturing technology has offered a new avenue for designing and fabricating high wave-absorbing meta structures.In this study,the mechanical properties and broadband absorption performance of Poly-Ether-Ether-Ketone(PEEK)–based electromagnetic wave–absorbing composite materials was investigated.The high-performance polymer PEEK was used as the matrix,and the materials with electromagnetic wave loss,such as reduced graphene oxide,Carbonyl Iron(CI),and Flake CI(FCI),were used as absorbers.Based on the theory of impedance matching,a wave-absorbing structure with a gradual impedance gradient was designed and printed.The test results showed that at the 2.0–18.0 GHz frequency band,the coverage rate of the effective absorption bandwidth was up to 72.0%,the average optimal reflectivity was–18.09 dB,and the wide-angle absorption range was 0°–30°.The advantages of additive manufacturing technology in designing and fabricating wave-absorbing structures are presented,demonstrating that the technology is an effective method for creating broadband absorbing structures.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第8期547-558,共12页 中国航空学报(英文版)
基金 the National Natural Science Foundation of China(No.12272298).
  • 相关文献

参考文献7

二级参考文献50

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部