期刊文献+

Proposed numerical and machine learning models for fiber-reinforced polymer concrete-steel hollow and solid elliptical columns

原文传递
导出
摘要 This study employs a hybrid approach,integrating finite element method(FEM)simulations with machine learning(ML)techniques to investigate the structural performance of double-skin tubular columns(DSTCs)reinforced with glass fiber-reinforced polymer(GFRP).The investigation involves a comprehensive examination of critical parameters,including aspect ratio,concrete strength,number of GFRP confinement layers,and dimensions of steel tubes used in DSTCs,through comparative analyses and parametric studies.To ensure the credibility of the findings,the results are rigorously validated against experimental data,establishing the precision and trustworthiness of the analysis.The present research work examines the use of the columns with elliptical cross-sections and contributes valuable insights into the application of FEM and ML in the design and evaluation of structural systems within the field of structural engineering.
出处 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第8期1169-1194,共26页 结构与土木工程前沿(英文版)
基金 Qujing Normal University Student Innovation and Entrepreneurship Training Project,No.S202310684035.
  • 相关文献

参考文献1

二级参考文献4

共引文献266

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部