期刊文献+

Design of computer vision assisted machine learning based controller for the Stewart platform to track spatial objects

原文传递
导出
摘要 The present work aims to develop an object tracking controller for the Stewart platform using a computer vision-assisted machine learning-based approach.This research is divided into two modules.The first module focuses on the design of a motion controller for the Physik Instrumente(PI)-based Stewart platform.In contrast,the second module deals with the development of a machine-learning-based spatial object tracking algorithm by collecting information from the Zed 2 stereo vision system.Presently,simple feed-forward neural networks(NN)are used to predict the orientation of the top table of the platform.While training,the x,y,and z coordinates of the three-dimensional(3D)object,extracted from images,are used as the input to the NN.In contrast,the orientation information of the platform(that is,rotation about the x,y,and z-axes)is considered as the output from the network.The orientation information obtained from the network is fed to the inverse kinematics-based motion controller(module 1)to move the platform while tracking the object.After training,the optimised NN is used to track the continuously moving 3D object.The experimental results show that the developed NN-based controller has successfully tracked the moving spatial object with reasonably good accuracy.
出处 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第8期1195-1208,共14页 结构与土木工程前沿(英文版)
  • 相关文献

参考文献2

二级参考文献1

共引文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部