期刊文献+

工业移动机器人智能化发展趋势研究

Research on Intelligent Development Trend of Industrial Mobile Robots
下载PDF
导出
摘要 针对工业移动机器人(AGV/AMR)智能化发展方向,提出了AGV/AMR健康度评价,涉及AGV重要部件、运行负荷、运行精度等多个方面,以此为依据,提出了结合大数据分析综合评估AGV健康度的自诊断方法,并依据健康度评价结果进行单机自主决策控制;另外,从AGV/AMR系统层面,提出了基于时空的快速仿真推演思路以及基于时空快速仿真推演的编队通行交通策略、多元化任务分配策略。 Aimed at the intelligent development direction of industrial mobile robots(AGV/AMR),it was proposed that an AGV/AMR health evaluation indicators,which involved many aspects such as AGV important components,operating loads,operating accuracy and so on.Based on the above,we combined with big data analysis,it was proposed that a self-diagnosis method to comprehensively evaluate the health of AGV,and finished single machine autonomous decision control according to health evaluation indicators.In addition,from the AGV/AMR system level,it was proposed that the idea of rapid simulation deduction based on time and space,as well as the formation traffic strategy and diversified task allocation strategy based on rapid simulation deduction of time and space.
作者 田华亭 冯仁宇 吴奕龙 周扬能 TIAN Huating;FENG Renyu;WU Yilong;ZHOU Yangneng(Yunnan KSEC Intelligent Equipment Co.,Ltd.,Kunming 650500,China;Shanghai Tobacco Group Co.,Ltd.,Shanghai 200082,China)
出处 《新技术新工艺》 2024年第7期1-5,共5页 New Technology & New Process
关键词 AGV健康度 健康度评价 故障自诊断 交通策略 任务优化分配 AGV health health evaluation indicators fault self-diagnosis traffic strategy task optimization assignment
  • 相关文献

参考文献6

二级参考文献48

  • 1Jing Lin, Feature extraction of machine sound using wavelet and its application in fault diagnosis [ J ] , NDT & E International, Volume 34, Issue 1, January 2001, Pages 25 - 30.
  • 2Javier Sanz, Ricardo Perera, Consuelo Huerta, Fault diagnosis of rotating machinery based on auto-associative neural networks and wavelet transforms [ J ], Journal of Sound and Vibration, Volume 302, Issues 4 -5,22 May 2007, Pages 981 - 999.
  • 3高志,余啸海.Matlab小波分析工具箱原理与应用[M].北京:国防工业出版社,2004.
  • 4邵晨曦,王剑,范金锋,杨明,王子才.一种自适应的EMD端点延拓方法[J].电子学报,2007,35(10):1944-1948. 被引量:71
  • 5Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non -stationary time series analysis[J].Proceeding of Royal Society London,1998,454 (1971):903-995.
  • 6Feldman M.Time-varying vibration decomposition and analysis based on the Hilbert transform[J].Journal of Sound and Vibration,2006,295(3/5):518-530.
  • 7Feldman M.Theoretical analysis and comparison of the Hilbert transform decomposition methods[J].Mechanical Systems and Signal Processing,2008,22(3):509-519.
  • 8Braun S,Feldman M.Decomposition of non-stationary signals into varying time scales:Some aspects of EMD and HVD methods[J].Mechanical Systems and Signal Processing,2011,25(7):2608-2630.
  • 9Deering R,Kaiser J F.The use of a masking signal to improve empirical mode decomposition[J].IEEE International Conference on Acoustics,Speech,and Signal Processing,2005,4:485-488.
  • 10The case western reser ve univer sity bearing data center [EB/OL].[2012-11-01].http://csegroups.case.edu/ Bearing Data Center / pages/ download-data-file.

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部