期刊文献+

融合全景SLAM与目标识别的无人机自主飞行技术

Autonomous drone flight technology integrating panoramic SLAM and object recognition
下载PDF
导出
摘要 无人机自主飞行可以使无人机更好地应对复杂的环境和任务,降低操作成本和飞行风险,对环境做出及时响应,实现更高效、安全、广泛的应用,在民用和军事领域都能发挥重要作用,为多个领域赋能。全景相机具有360°的全方位视角,获取的环境信息更加完善,相较于单目相机更有优势。为了实现无人机的自主飞行,基于全景相机进行同时定位与建图,利用SPHORB算子进行特征提取和匹配,从而获取无人机的位姿数据的同时对周围环境建图,获取环境信息。利用YOLOv5算法进行目标识别,获取目标地物在相机坐标系中位置,为无人机自主靠近/远离目标提供信息基础,使无人机具备更加强大的环境感知能力,有利于无人机避障飞行,更好地规划飞行路径,实现自主飞行。 Autonomous drone flight enables drones to better respond to complex environments and tasks,reducing operational costs and flight risks,responding promptly to environmental changes,and achieving more efficient,safe,and widespread applications.It plays a significant role in both civil and military domains,empowering various sectors.Panoramic cameras provide a 360-degree omnidirectional view,yielding more comprehensive environmental information compared to monocular cameras.To achieve autonomous drone flight,Simultaneous Localization and Mapping(SLAM)is performed using a panoramic camera,and the SPHORB operator is used for feature extraction and matching to obtain the drone's pose data and map the surroundings.The YOLOv5 algorithm is employed for object recognition,determining the positions of target objects in the camera coordinate system.This information serves as the basis for autonomous drone approaches and departures from targets,enhancing the drone's environmental awareness and aiding obstacle avoidance,as well as optimizing flight paths.
作者 张毅 王潇 宋伟伟 杨见兵 ZHANG Yi;WANG Xiao;SONG Weiwei;YANG Jianbing(School of Geodesy and Geomatics,Wuhan University,Wuhan 430079,China;School of Geodesy and Geomatics,Hubei Luojia Laboratory,Wuhan University,Wuhan 430079,China;Air Force Early Warning Academy,Wuhan 430019,China)
出处 《测绘工程》 2024年第5期36-42,共7页 Engineering of Surveying and Mapping
基金 国家自然科学基金资助项目(U23A2080) 自然资源部国土卫星遥感应用重点实验室开放基金资助项目(KLSMNR-G202203)。
关键词 同时定位与建图 特征提取与匹配 目标识别 无人机自主飞行 SLAM feature traction and matching object recognition autonomous drone flight
  • 相关文献

参考文献3

二级参考文献26

  • 1刘艳华,孙颖,孙智孝.活塞发动机与无人机性能匹配分析[J].飞机设计,2007,27(4):10-12. 被引量:29
  • 2David C, Rita C, Carlos S. A nonlinear quadrotor trajectory tracking controller with disturbance rejection [J]. Control Engineering Practice, 2014, 26(1) : 1 -10.
  • 3Lim H, Lee H, Kim H J. Onboard flight control of a micro quadrotor using single strapdown optical flow sensor[ C ]//2012 IEEE/RSJ Interna- tional Conference on Intelligent Robots and Systems. Piscataway, N J, USA: IEEE, 2012:495 -500.
  • 4Bai Y, Liu H, Shi Z, et al. Robust control of quadrotor unmanned air vehicles [ C ]//31st Chinese Control Conference. Piscataway, N J, USA : IEEE, 2012:4462-4467.
  • 5Meier L, Tanskanen P, Fraundorfer F, et al. Pixhawk: A system for autonomous flight using onboard computer vision[ C]//2011 IEEE Inter- national Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA : IEEE, 2011 : 2992 - 2997.
  • 6Engel J, Sturm J, Cremers D. Camera-based navigation of a low-cost quadrocopter[ C ~//2012 IEEE/RSJ International Conference on Intelli- gent Robots and Systems. Piscataway, NJ, USA: IEEE, 2012 : 2815 - 2821.
  • 7Klein G, Murray D. Parallel tracking and mapping for small AR workspaces[ Cl//6th IEEE and ACM International Symposium on Mixed and Augmented Reality. Piscataway, N J, USA : IEEE, 2007 : 225 - 234.
  • 8Weiss S, Scaramuzza D, Siegwart D. Monoctdar-SLAM-hased navigation for autonomous micro helicopters in GPS-denied environments [J]. Journal of Field Robotics, 2011, 28(6) : 854 -874.
  • 9Weiss S, Achtelik M W, Lynen S, et al. Monocular vision for long-term micro aerial vehicle state estimation: A compendiuml_ Jj. Journal of Field Robotics, 2013, 30(5) : 803 -830.
  • 10Olofsson J. Towards autonomous landing of a quadrotor using monocular SLAM techniques [ D ]. Linkoping, Sweden: Linkoping University, 2012.

共引文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部