期刊文献+

Robust AUC maximization for classification with pairwise confidence comparisons

原文传递
导出
摘要 Supervised learning often requires a large number of labeled examples,which has become a critical bottleneck in the case that manual annotating the class labels is costly.To mitigate this issue,a new framework called pairwise comparison(Pcomp)classification is proposed to allow training examples only weakly annotated with pairwise comparison,i.e.,which one of two examples is more likely to be positive.The previous study solves Pcomp problems by minimizing the classification error,which may lead to less robust model due to its sensitivity to class distribution.In this paper,we propose a robust learning framework for Pcomp data along with a pairwise surrogate loss called Pcomp-AUC.It provides an unbiased estimator to equivalently maximize AUC without accessing the precise class labels.Theoretically,we prove the consistency with respect to AUC and further provide the estimation error bound for the proposed method.Empirical studies on multiple datasets validate the effectiveness of the proposed method.
出处 《Frontiers of Computer Science》 SCIE EI CSCD 2024年第4期73-83,共11页 中国计算机科学前沿(英文版)
基金 Natural Science Foundation of Jiangsu Province,China(BK20222012,BK20211517) National Key R&D Program of China(2020AAA0107000) National Natural Science Foundation of China(Grant No.62222605)。
关键词 method pairwise WEAKLY
  • 相关文献

参考文献1

二级参考文献2

共引文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部