期刊文献+

基于改进粒子群算法的磁力吊PID控制分析

Analysis of PID control for magnetic suspension based on improved particle swarm optimization algorithm
下载PDF
导出
摘要 该研究旨在提升磁力吊在吸附和吊运钢板过程中的控制精度与稳定性。首先根据拉格朗日方程建立磁力吊吸附钢板后的二阶微分动力学模型,并通过拉氏变换后在Simulink中建立PID控制仿真模型。为了优化PID控制器的3个控制参数,研究采用改进的粒子群算法(PSO)。具体而言,通过选取位置的积分时间绝对误差(ITAE)和均方误差(MSE)加权评价指标作为适应度函数,求解出最佳PID控制参数组合。仿真结果表明,优化后的PID控制策略在减少系统误差和控制摆幅方面表现出显著优势,同时提高了系统的响应速度和稳定性,为进一步研究和工程应用提供了参考依据。 This study aims to improve the control accuracy and stability of magnetic suspension during the adsorption and lifting of steel plates.Firstly,a second-order differential dynamic model of the magnetic suspension absorbing steel plates is established based on the Lagrange equation,and a PID control simulation model is established in Simulink after Laplace transformation.In order to optimize the three control parameters of the PID controller,this study adopts an improved particle swarm optimization algorithm(PSO).Specifically,by selecting the weighted evaluation indicators of the integration time absolute error(ITAE)and mean square error(MSE)of the position as fitness functions,the optimal combination of control parameters is solved.The simulation results show that the optimized PID control strategy exhibits significant advantages in reducing system errors and controlling swing,while improving the response speed and stability of the system,providing a reference basis for further research and engineering applications.
作者 高崇龙 许生福 GAO Chonglong;XU Shengfu(Hongxing Co.,Ltd.of Jiuquan Iron and Steel Co.,Jiayuguan 735100,China)
出处 《重型机械》 2024年第4期90-94,共5页 Heavy Machinery
关键词 磁力吊 粒子群算法 PID控制 参数寻优 magnetic suspension particle swarm optimization algorithm PID control parameter optimization
  • 相关文献

参考文献6

二级参考文献48

  • 1王晓军,邵惠鹤.基于模糊的桥式起重机的定位和防摆控制研究[J].系统仿真学报,2005,17(4):936-939. 被引量:77
  • 2乔孟丽,张景元,温莹莹.一种基于遗传算法的模糊控制规则的优化方法[J].计算机测量与控制,2006,14(10):1349-1351. 被引量:17
  • 3刘金棍.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2003.
  • 4Sakawa Y, Shindo Y. Optimal Control of Container Cranes [J]. Automatica, 1982, 18(3): 257-266.
  • 5Auering J W, Troger H. Time Optimal Control of Overhead Cranes with Hoisting of the Load [J]. Automatica, 1987, 23(4): 437-447.
  • 6Corriga G., Giua A. An Implicit Gain-scheduling Controller for Cranes [J]. IEEE Transaction on Control systems Technology, 1998, 6(1): 15-20.
  • 7Boustany F, d'Andrea-Novel B. Adaptive Control of an Overhead Crane Using Dynamic Feedback Linearization and Estimation Design [C]. Pro. Of the 1992 IEEE International Conferene on Robotics and Automation, Nice, France, 1992, 1963-1968.
  • 8Butler H., Honderd G., Van Amerongen J. Model Reference Adaptive Control of a Gantry Scale Model [J]. IEEE Control system Magazine, 1991, 57-62.
  • 9Fliess M, Levine J, Rouchon P. A Simplified Approach of Crane Control via Generalized State Space Model [C]. Proceedings of the 30th IEEE conference on Decision and Control, 1991, 1: 736-741.
  • 10Benhidjeb A, Gissinger G L. Fuzzy Control of an Overhead Crane Performance Comparision with Classic Control [J]. Control Engineering Practice, 1995, 3(12): 1687-1696.

共引文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部