摘要
为准确预报土石坝渗流量的变化趋势,针对传统的时间序列模型存在非线性处理能力较差、捕捉序列依赖关系能力不足等问题,建立了基于EEMD-WOA-SVM的土石坝渗流量预测模型.该模型采用集合经验模态(EEMD)有效分解土石坝渗流时间序列,引入鲸鱼优化算法(WOA)寻找支持向量机模型(SVM)的最优超参数组合,再将各模态分解分量代入组合模型预测并重构预测结果.案例分析结果表明,所建EEMD-WOA-SVM模型与传统的SVM模型相比,其拟合优度R2提升了19.8%,均方误差EMS、均方根误差ERMS、平均绝对误差EMA和平均绝对百分比误差EMAP分别降低了76%、50.3%、45.2%和43.2%.另外,与GA-SVM和WOA-SVM模型相比,R2值达0.9486,EMS、ERMS、EMA和EMAP分别降低至0.0012、0.0352、0.0289和0.0176,进一步说明了该组合模型具有较高的预测精度,为土石坝渗流量的精确预测提供了新途径.
In order to accurately forecast the trend of seepage flow from earth and rock dams,an earth and rock dam seepage flow prediction model based on EEMD-WOA-SVM was established to address the problems of poor nonlinear processing ability and insufficient ability to capture sequence dependencies in the traditional time series model.The model uses the ensemble empirical modal(EEMD)to effectively decompose the seepage time series of earth and rock dams,introduces the Whale Optimization Algorithm(WOA)to find the optimal hyper-parameter combination of the Support Vector Machine(SVM)model,and then substitutes the decomposed components of each modal into the combined model for prediction and reconstruction of the prediction results.The case study results show that the proposed EEMD-WOA-SVM model improves its R2 by 19.8%,and reduces the mean square error,root mean square error,mean absolute error,and mean absolute percentage error by 76%,50.3%,45.2%,and 43.2%,respectively,when compared with the traditional SVM model.In addition,compared with the GA-SVM and WOA-SVM models,the goodness-offit reached 0.9486,and the EMS,ERMS,EMA,and EMAP are reduced to 0.0012,0.0352,0.0289,and 0.0176,respectively.The combined model has high prediction accuracy and provides a new way for the accurate prediction of seepage flow from earth and rock dams.
作者
杨石勇
傅蜀燕
赵定柱
高兰兰
欧斌
YANG Shiyong;FU Shuyan;ZHAO Dingzhu;GAO Lanlan;OU Bin(College of Water Conservancy,Yunnan Agricultural University,Kunming 650201,China;Yunnan Key Laboratory of Water Conservancy and Hydropower Engineering Safety,Kunming 650201,China;The National Key Laboratory of Water Disaster Prevention,Nanjing 210098,China)
出处
《三峡大学学报(自然科学版)》
CAS
北大核心
2024年第5期7-12,共6页
Journal of China Three Gorges University:Natural Sciences
基金
国家自然科学基金项目(52069029,52369026)
云南省水利水电工程安全重点实验室开放课题基金(202302AN360003)。
关键词
集合经验模态分解
鲸鱼优化算法
支持向量机
土石坝
渗流量预测
ensemble empirical modal decomposition
whale optimization algorithms
support vector machine
earth and rock dams
seepage predication