期刊文献+

基于Kumaraswamy分布多部件应力-强度模型统计推断

Statistical Inference of Multi-component Stress-strength Model Based on Kumaraswamy Distribution
下载PDF
导出
摘要 为研究串联系统下多部件应力-强度模型的可靠性问题,基于Kumaraswamy分布,采用极大似然法给出参数及应力-强度模型可靠度的极大似然估计(maximum likelihood estimation,MLE);再利用Jeffreys准则构造无信息先验分布,运用马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)方法给出参数及应力-强度模型可靠度的贝叶斯估计;最后,利用逆矩估计方法给出参数及应力-强度模型可靠度的逆矩估计(inverse moment estimation,IME)。数值模拟结果表明,在不同系统可靠度及不同样本量条件下,通过对3种估计方法的数值进行比较发现贝叶斯估计效果最好,IME优于MLE。该研究为探讨串联系统多部件应力-强度模型可靠性提供了一定的理论基础。 In order to study the reliability of multi-component stress-strength model in series system,based on Kumaraswamy distribution,the maximum likelihood estimation(MLE)of parameters and stress-strength model reliability was given by maximum likelihood method.The Jeffreys criterion was used to construct the uninformative prior distribution,and the Markov chain Monte Carlo(MCMC)method was used to give the Bayesian estimation of the parameters and the stress-strength model reliability.Finally,the inverse moment estimation(IME)of the parameters and the stress-strength model reliability was given by the inverse moment method.The numerical simulation results showed that under different system reliability and different sample sizes,by comparing the values of the three estimation methods,the Bayesian estimation was the best,and IME was better than MLE.This study provided a certain degree of theoretical basis for exploring the reliability analysis of multi-component stress-strength model under series system.
作者 何飞 蔡静 何剑 韩荣 HE Fei;CAI Jing;HE Jian;HAN Rong(School of Data Science and Information Engineering,Guizhou Minzu University,Guiyang 550025,China)
出处 《湖北民族大学学报(自然科学版)》 CAS 2024年第3期435-441,共7页 Journal of Hubei Minzu University:Natural Science Edition
基金 国家自然科学基金项目(11901134)。
关键词 Kumaraswamy分布 多部件应力-强度模型 无信息先验 逆矩估计 串联系统 MH算法 Kumaraswamy distribution multi-component stress-strength model non-informative prior inverse moment estimation(IME) series system MH algorithm
  • 相关文献

参考文献5

二级参考文献11

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部