摘要
道路标牌的位置、尺寸等几何参数普查是交通资产管理、无人驾驶等应用的关键环节。车载激光扫描三维点云中路牌不仅占比小,而且受周围树木干扰大,导致边缘点云缺失且包含大量噪声。为了准确提取点云中标牌杆和平面的位置和几何信息,提出了两阶段杆状物点云分割方法,由粗及细提取出标牌杆及其相连的标牌平面点云簇;进而通过鲁棒主成分分析(robust principal component analysis,RPCA)排除标牌周围噪声和杂点干扰,结合点云簇形态分析得到独立的主杆体和标牌平面2个部件;再引入环状域生长拟合圆柱体,法向量投影采样与定向包围盒(oriented bounding box,OBB)紧致拟合标牌平面,分别得到主杆体和标牌的准确几何信息。实验采集了湖北省武汉市洪山区、高新区和武昌区34个不同路口下的激光点云数据,在KPConv点云分割网络下进行训练与验证,准确率达到90.31%,标牌精确度达到91.07%,召回率达到了92.74%;并对上述数据中的20个路口的98个道路标牌进行几何信息提取,有效提取率达到89.80%,位置精度达到0.0621 m,几何误差达到8.07%。实验表明:该方法能有效排除点云噪声和杂点干扰,实现对点云缺失在20%以内的标牌的有效提取。
The extraction of geometric parameters of road signs,such as position and sizes,is a crucial aspect of transportation asset management and autonomous driving applications.In vehicular LiDAR point clouds,road signs occupy a small proportion,and are subject to significant interference from surrounding trees,resulting in blurred edges and noise.To accurately extracting the geometric information of road signs,a two-stage pole-like object point cloud segmentation method is proposed.Subsequently,robust principal component analysis(RPCA)is employed to eliminate noise and extraneous points around the signs.The components of independent central poles and sign planes are obtained through the shape analysis of point cloud clusters.Finally,introduce the annular region growth to fit the central poles,and employ normal vector projective sampling and oriented bounding box(OBB)to approxi-mate the signs.Thus,accurate geometric information is obtained for both the central pole and the sign.Experiments are conducted using laser point cloud from 34 different intersections in the Hongshan,Gaoxin,and Wuchang dis-tricts of Wuhan,China.Training and validation using the KPConv segmentation network achieves an accuracy of 90.31%,a precision of 91.07%,and 92.74%recall rate.Additionally,the extraction of geometric information is con-ducted on 98 road signs from 20 intersections within the data above.This method achieves an effective extraction rate of 89.80%,a positional accuracy of 0.0621 m,and 8.07%geometric error.The experiments demonstrate that this method effectively eliminates noise and extraneous point interference,and performs well on those signs with missing point clouds within 20%.
作者
柯昀皓
黄玉春
吴梓健
KE Yunhao;HUANG Yuchun;WU Zijian(School of Remote Sensing and Information Engineering,Wuhan University,Wuhan,430079,China)
出处
《交通信息与安全》
CSCD
北大核心
2024年第2期76-86,共11页
Journal of Transport Information and Safety
基金
国家自然科学基金项目(41671419)资助。
关键词
智能交通
道路标牌
几何信息提取
鲁棒主成分分析
intelligent transportation
road sign
geometric information extraction
robust principal component analysis