期刊文献+

结构参数对惯性通道液压悬置特性的影响

Influence of structural parameters on hydraulic mount characteristics of inertia channels
下载PDF
导出
摘要 为分析结构参数对液压悬置动刚度和滞后角的影响,采用集总参数的方法搭建液压悬置的动力学模型;然后,分析惯性通道横截面积、惯性通道长度、上腔柔度、惯性通道液体惯性系数以及惯性通道液体阻尼系数对悬置特性的影响。结果表明,增加惯性通道的横截面积、长度、上腔柔度以及液体惯性系数,液压悬置的动刚度和滞后角峰值以及峰值频率均相应的增加;而改变惯性通道液体阻尼系数仅改变液压悬置动刚度和滞后角的峰值大小。 To analyze the influence of structural parameters on the dynamic stiffness and lag angle of hydraulic mount,a lumped parameter method was employed to construct a dynamic model of the hydraulic mount.Subsequently,the effects of the cross-sectional area,length,upper chamber flexibility,liquid inertia coefficient,and liquid damping coefficient of the inertia channel on mount characteristics were analyzed.The results show that with the increase of the cross-sectional area,length,upper chamber flexibility and liquid inertia coefficient of the inertia channel,the peak values and peak frequencies of the dynamic stiffness and lag angle of the hydraulic mount increase accordingly;while changing the liquid damping coefficient of the inertia channel only influences the peak values of the dynamic stiffness and lag angle of the hydraulic mount.
作者 林智宏 黄跃东 谢泓 LIN Zhihong;HUANG Yuedong;XIE Hong(School of Mechanical and Electrical Engineering,Sanming University,Sanming 365004,China;School of Marine Mechanical and Electrical,Xiamen Ocean Vocational College,Xiamen 361100,China;Xiamen Key Laboratory of Intelligent Fishery,Xiamen 361100,China)
出处 《邵阳学院学报(自然科学版)》 2024年第4期48-56,共9页 Journal of Shaoyang University:Natural Science Edition
基金 福建省自然科学基金(2023J011033) 三明学院引进高层次人才启动经费(23YG01) 三明市引导性科技项目(2023-G-1)。
关键词 液压悬置 结构参数 动刚度 滞后角 hydraulic mount structural parameters dynamic stiffness lag angle
  • 相关文献

参考文献2

二级参考文献15

  • 1邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38. 被引量:238
  • 2[1]Geisberger A, Hajepour A K, Golnaraghi F. Nonlinear modeling of hydraulic mounts:theory and experiment. Journal of Sound and Vibration, 2002, 249(2):371~397
  • 3[2]Kim G, Singh R. Nonlinear analysis of automotive hydraulic engine mount. Transactions of ASME, Journal of Dynamic systems, Measurements, and Control, 1993, 115:482~487
  • 4[5]Nomura T, Hughes T J R. An arbitrary Langangian- Eulerian finite element method for interaction of fluid and a rigid body. Computer Methods in Applied Mechanics and Engineering, 1992, 95:115~138
  • 5[6]Bathe K J, Hang H, Wang M H. Finite element analysis of incompressible and compressible fluid flows with free surfaces and structural interaction. Computers & Structures, 1995, 56(2/3):193~213
  • 6[8]Brooks A N, Hughes T J R. Streamline upwind/petrov- Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering , 1982, 32:199~259
  • 7[9]ADINA R & D, ADINA Theory and Modeling Guide-ADIN-A and -F, 2001
  • 8[10]Charlton D J, Yang Y, Teh K K. A review of methods to characterize rubber elastic behavior for use in finite element analysis. Rubber Chemistry and Technology, 1994, 67:481~503
  • 9[11]Seibert D J, Schoche N. Direct comparison of some recent rubber elasticity models. Rubber Chemistry and Technology, 2000, 73:366~384
  • 10范让林,吕振华,冯振东,张建文.惯性通道-解耦膜式液压悬置动特性分析[J].汽车工程,1997,19(4):226-233. 被引量:11

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部