摘要
目的 根据乳腺癌患者术前的影像病理特征以及肿瘤标志物指标来构建预测模型以预测前哨淋巴结(SLN)的转移情况。方法 回顾性分析2022年1月至2023年4月在郑州大学第一附属医院收治的232例乳腺癌患者的术前检查资料,并按照3∶1随机分为训练集(174例)和验证集(58例),进行单因素分析和多因素logistic回归分析,以确定影响SLN转移的独立预测因素,并构建列线图,分别采用受试者工作特征曲线(ROC曲线)分析,校正曲线分析和决策曲线分析,评估模型的准确性以及临床应用价值。结果 多因素分析结果显示,可触及性、CA153、钙化、ALN血流信号是SLN转移的独立危险因素(P <0.05),将4个独立变量整合到nomogram图中,并绘制ROC,训练集和验证集的AUC分别为0.810(95%CI:0.744~0.876)、0.737(95%CI:0.606~0.867),校准曲线显示具有良好的预测准确性。结论 建立一种nomogram来术前预测乳腺癌患者SLN转移风险,为临床实践提供了一种非侵入性的方法,并作为一种可靠的工具来识别不必要SLN活检的乳腺癌患者,有助于制定进一步腋窝淋巴结清扫术(ALND)及辅助治疗的决策。
Objective To develop a prognostic model that integrates preoperative imaging,pathological features,and tumor marker indexes for predicting metastasis in sentinel lymph nodes(SLN).Methods The preoperative examination data of 232 breast cancer patients admitted to the First Affiliated Hospital of Zhengzhou University between January 2022 and April 2023 were retrospectively analyzed.The dataset was randomly divided into a training set(174 cases)and a validation set(58 cases)at a ratio of 3∶1.Univariate and multivariate logistic regression analyses were performed to identify independent predictors influencing SLN metastasis.A nomogram was constructed,and its accuracy and clinical applicability were evaluated using receiver operating characteristic(ROC curve)analysis,calibration curve analysis,and decision curve analysis.Results The multivariate analysis revealed that palpability,CA153,calcification,and ALN blood flow signal were identified as independent risk factors for SLN metastasis(P<0.05).These four variables were integrated into a nomogram and plotted on the ROC curve.The area under the curves(AUCs)for the training set and validation set were 0.810(95%CI:0.744~0.876)and 0.737(95%CI:0.606~0.867),respectively,indicating good predictive accuracy as demonstrated by the calibration curve.Conclusion Revised sentence:"Developing a nomogram for preoperative prediction of SLN metastasis in breast cancer patients offers a non-invasive approach for clinical application and serves as a reliable tool to identify breast cancer patients who may not require SLN biopsy,thereby facilitating decisions regarding further axillary lymph node dissection(ALND)and adjuvant therapy.
作者
李劭晋
郑世鹏
LI Shaojin;ZHENG Shipeng(Department of Breast Surgery,the First Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,China)
出处
《实用医学杂志》
CAS
北大核心
2024年第17期2418-2424,共7页
The Journal of Practical Medicine
基金
河南省高等学校重点科研项目计划(编号:19B320042)
河南省医学科技攻关计划(联合共建)项目(编号:LHGJ20190141)
河南省医学教育研究项目(编号:Wjlx2020063)。
关键词
乳腺癌
预测模型
前哨淋巴结
多维度指标
影像学特征
肿瘤标志物
临床病理特征
breast cancer
predictive model
sentinel lymph node
multidimensional indicators
imaging features
tumor markers
clinicopathological features