摘要
为适应智能电网的快速响应需求,电力负荷预测已成为确保电力系统安全的关键任务之一。负荷预测的准确与否对电力系统的稳定运行至关重要。分析了电力负荷预测的常用方法,并根据研究方法的不同将电力负荷预测技术分为传统方法以及深度学习方法进行详细讨论,总结了研究成果,并对电力负荷预测在提升电力系统安全性方面的未来发展方向进行展望。
In order to adapt to the rapid response demand of smart grid,power load forecasting has become one of the key tasks to ensure the security of power system.The accuracy of load forecasting is crucial to the stable operation of the power system.This paper analysed common methods of power load forecasting are analysed and the power load forecasting techniques are classified into traditional methods and deep learning methods according to the different research methods,which are discussed in detail;the research results are summarised,and the future development direction of power load forecasting in enhancing the security of the power system is prospected.
作者
张斯棋
Zhang Siqi(School of Safety Science and Engineering,Liaoning Technical University,Huludao Liaoning 125105,China)
出处
《现代工业经济和信息化》
2024年第8期127-128,共2页
Modern Industrial Economy and Informationization
关键词
电力负荷预测
电力系统
深度学习
机器学习
神经网络
power load forecasting
power system
deep learning
machine learning
neural network