期刊文献+

基于深度学习的电力负荷预测方法研究

Research on Deep Learning Based Electricity Load Forecasting Method
下载PDF
导出
摘要 为适应智能电网的快速响应需求,电力负荷预测已成为确保电力系统安全的关键任务之一。负荷预测的准确与否对电力系统的稳定运行至关重要。分析了电力负荷预测的常用方法,并根据研究方法的不同将电力负荷预测技术分为传统方法以及深度学习方法进行详细讨论,总结了研究成果,并对电力负荷预测在提升电力系统安全性方面的未来发展方向进行展望。 In order to adapt to the rapid response demand of smart grid,power load forecasting has become one of the key tasks to ensure the security of power system.The accuracy of load forecasting is crucial to the stable operation of the power system.This paper analysed common methods of power load forecasting are analysed and the power load forecasting techniques are classified into traditional methods and deep learning methods according to the different research methods,which are discussed in detail;the research results are summarised,and the future development direction of power load forecasting in enhancing the security of the power system is prospected.
作者 张斯棋 Zhang Siqi(School of Safety Science and Engineering,Liaoning Technical University,Huludao Liaoning 125105,China)
出处 《现代工业经济和信息化》 2024年第8期127-128,共2页 Modern Industrial Economy and Informationization
关键词 电力负荷预测 电力系统 深度学习 机器学习 神经网络 power load forecasting power system deep learning machine learning neural network
  • 相关文献

参考文献1

二级参考文献16

  • 1Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agants[J]. IEEE Trans on Systems, Man and Cybernetics, Part B, 1996, 26(1): 29-41.
  • 2Colomi A, Dorigo M, Maniezzo V. An investigation of some properties of an ant algorithm[C]. Proceedings of the Parallel Problem Solving from Nature Conference (PPSN'92)[A], Brussels, Belgium:Elsevier Publishing, 1992: 509-520.
  • 3Dorigo M, Caro G. D. Ant colony optimization: a new meta-heuristic[C]. Proceedings of the 1999 congress on Evolutionary computation[A]. Washington, DC: USA, 1470-1477.
  • 4Dorigo M, Gambardella L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transon, Evolutionary Computation, 1997, 1(1): 53-66.
  • 5El-Keib A A, Sisworahardjo N S. Unit commitment using the ant colony search algorithm[C]. Power Engineering 2002, Conference on,Large Engineering Systems[A]. LESCOPE 02, Pages: 2-6.
  • 6Maniezzo V, Colomi A, Dorigo M. The ant system applied to the quadralic assignment problem[J]. Knowledge and Data Engineering,IEEE Transactions on, 1999, 11(5): 769-778.
  • 7Merp P, Freisleben B, A comparison of memetic algorithms, tabu search, and ant colonies for the quadratic assignment problem[C]. Evolutionary Computation, CEC 99, Procedings of the 1999 Congress on, Vol. 3, Pages: 2070.
  • 8Yu Inkeun, Chou C S, Song Y H. Application of the ant colony search algorithm to short-term generation scheduling problem of thermal units[C]. Proceedings of POCON'98, International Conference on Power System Technology, Beijing, China, 1998, 552-556.
  • 9Zhang Subing, Liu Zemin. Neural Network Training Using Ant Algorithm In ATM Traffic Control[C]. The 2001 IEEE International Symposium on, 2001, Vol.2, Page(s): 157-160.
  • 10Shenghong Li, Zemin Liu. A General CAC Approach Using Novel Ant Algorithm Training Based Neural Network[C]. IJCNN '99.International Joint Conference on, 1999, Vol.3 Page(s): 1885-1888.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部