期刊文献+

基于发电量最优和安全性的复杂山地风电场微观选址研究

MICRO SITTING STUDY IN COMPLEX MOUNTATAINOUS WIND FARM BASED ON OPTIMAL POWER GENERATION AND SECURITY
下载PDF
导出
摘要 该文以复杂山地风电场机组尾流后发电量最优为目标函数,以单个机组的发电量和安全性为个体适应度,创新性地提出一种基于尾流后发电量最优兼顾安全性的复杂山地风电场微观选址方法。经实际复杂山地风电场的应用分析发现,全场年净发电量相比于传统人工经验排布方法提升1.6%,各机组安全性识别指标均处于高风险阈值之下,降低机组运行风险。研究表明,该方法在复杂山地风电场的微观选址中具有较强的指导性和实用性,可用于实际风电场微观选址机组排布优化及安全保障。 The interaction of wake effects and complex topography in mountainous wind farms poses challenges to power generation and escalates the risk of turbine failure.This paper proposes a novel micro-siting method designed for complex mountainous wind farms,which takes maximizing energy yield and ensuring turbine safety as the objective function.The proposed methodology takes power generation and safety performance of each turbine as the individual fitness.A case study on an actual operational wind farm reveals that the implementation of this method obtains a 1.6%increase in annual net power generation compared to conventional empirical approaches.Furthermore,the method ensures that safety identification indicators for each turbine remain beneath established high-risk thresholds,affirming the comprehensive safety status of the wind farm.The demonstrated results indicate that the method can serve as an instructive and practical tool for micro-siting optimization and risk mitigation in complex mountainous wind environments.
作者 李金缀 姜宏超 Li Jinzhui;Jiang Hongchao(Beijing Goldwind Science&Creation Windpower Equipment Co.,Ltd.,Beijing 100176,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2024年第8期486-493,共8页 Acta Energiae Solaris Sinica
关键词 风电场 微观选址 遗传算法 山地 安全性 CFD仿真 叶轮面 wind farm micro sitting genetic algorithm mountainous security CFD simulation rotor plane
  • 相关文献

参考文献8

二级参考文献73

  • 1张钧.风电场微观选址与总图运输设计优化[J].武汉大学学报(工学版),2011,44(S1):1-5. 被引量:6
  • 2杨振斌,薛桁,桑建国.复杂地形风能资源评估研究初探[J].太阳能学报,2004,25(6):744-749. 被引量:34
  • 3丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究[J].中国电机工程学报,2005,25(10):107-110. 被引量:218
  • 4宫靖远.风电场工程技术手册[M].北京:机械工业出版社.2003.32-34.
  • 5Jeff A. 10 steps to developing a wind farm [ EB/OL]. http ://www. awea. org/documents/factsheets, 2009.
  • 6Wiser R, Bolinger M. Annual report on U. S. : Wind power installation, cost, and performance trends, 2006 [ R]. Berkeley, California: U. S department of Energy, 2007.
  • 7Grady S A, Hussaini M Y, Abdullah M M. Placement of wind turbines using genetic algorithms [ J ]. Renewable Energy, 2005, 30 (2) : 259-270.
  • 8Mosetti G, Poloni C, Diviacco B. Optimization of wind turbine positioning in large wind farms by means of a genetic algorithm [ J ]. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 51 ( 1 ) : 105-116.
  • 9Laekner M A, Elkinton C N. An analytical framework for offshore wind farm layout optimization [ J ]. Wind Engi- neering, 2007, 31 ( 1 ) : 17-31.
  • 10Castro Mora J, Calero Bar6n J M, Riquelme Santos J M, et al. An evolutive algorithm for wind farm optimal design [J]. Neurocomputing, 2007, 70(16-18):2651-2658.

共引文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部