期刊文献+

Affine Connections and Gauss-Bonnet Theorems in the Heisenberg Group

Heisenberg群上的仿射联络和Gauss-Bonnet定理
原文传递
导出
摘要 In this paper,we compute sub-Riemannian limits of Gaussian curvature associated to two kinds of Schouten-Van Kampen affine connections and the adapted connection for a Euclidean C2-smooth surface in the Heisenberg group away from characteristic points and signed geodesic curvature associated to two kinds of Schouten-Van Kampen affine connections and the adapted connection for Euclidean C2-smooth curves on surfaces.We get Gauss-Bonnet theorems associated to two kinds of Schouten-Van Kampen affine connections in the Heisenberg group. 本文计算了Heisenberg群中远离示性点的欧几里得C²光滑曲面对应于两种Schou-ten-VanKampen仿射联络和容许联络的高斯曲率的次黎曼极限,以及曲面上欧几里得C2光滑曲线的对应于两种Schouten-VanKampen仿射联络和容许联络的符号测地曲率,得到了Heisen-berg群中对应于两种Schouten-VanKampen仿射联络和容许联络的Gauss-Bonnet定理.
作者 WANG Yong 王勇(东北师范大学数学与统计学院,吉林长春130024)
出处 《数学进展》 CSCD 北大核心 2024年第5期1103-1119,共17页 Advances in Mathematics(China)
基金 Supported by NSFC(No.11771070).
关键词 Schouten-Van Kampen affine connection the adapted connection Gauss-Bonnet theorem sub-Riemannian limit Heisenberg group Schouten-Van Kampen仿射联络 容许联络 Gauss-Bonnet定理 次黎曼极限 Heisenberg群
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部