期刊文献+

STDNet: A Spatio-Temporal Decomposition Neural Network for Multivariate Time Series Forecasting

原文传递
导出
摘要 Long-term multivariate time series forecasting is an important task in engineering applications. It helps grasp the future development trend of data in real-time, which is of great significance for a wide variety of fields. Due to the non-linear and unstable characteristics of multivariate time series, the existing methods encounter difficulties in analyzing complex high-dimensional data and capturing latent relationships between multivariates in time series, thus affecting the performance of long-term prediction. In this paper, we propose a novel time series forecasting model based on multilayer perceptron that combines spatio-temporal decomposition and doubly residual stacking, namely Spatio-Temporal Decomposition Neural Network (STDNet). We decompose the originally complex and unstable time series into two parts, temporal term and spatial term. We design temporal module based on auto-correlation mechanism to discover temporal dependencies at the sub-series level, and spatial module based on convolutional neural network and self-attention mechanism to integrate multivariate information from two dimensions, global and local, respectively. Then we integrate the results obtained from the different modules to get the final forecast. Extensive experiments on four real-world datasets show that STDNet significantly outperforms other state-of-the-art methods, which provides an effective solution for long-term time series forecasting.
出处 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第4期1232-1247,共16页 清华大学学报自然科学版(英文版)
基金 supported by the National Key Research and Development Program of China (No. 2021YFB3300503) Regional Innovation and Development Joint Fund of National Natural Science Foundation of China (No. U22A20167) National Natural Science Foundation of China (No. 61872260).
  • 相关文献

参考文献1

二级参考文献17

  • 1陈华友,盛昭瀚,刘春林.基于向量夹角余弦的组合预测模型的性质研究[J].管理科学学报,2006,9(2):1-8. 被引量:43
  • 2杨兆升,王媛,管青.基于支持向量机方法的短时交通流量预测方法[J].吉林大学学报(工学版),2006,36(6):881-884. 被引量:80
  • 3龚珊,尹相勇,朱爱华.基于浮动车的路段行程时间卡尔曼滤波预测算法[C]//第四届中国智能交通年会,北京,2008,2(24):513-518.
  • 4邵春福,熊志华,姚智胜.道路网短时交通需求预测理论、方法及应用[M].北京:清华大学出版社,2011.
  • 5Wu Chun-hsin, Wei Chia-chen, Chang Ming-hua, et al, Travel time prediction with support vector regression[J]. IEEE Tran- saction on Intelligent Transportation systems, 2004,5(12) : 276- 281.
  • 6Theja P V V K,Vanajakshi L. Short Term Prediction of Traffic Parameters Using Support Vector Machines Technique[C]//E- merging Trends in Engineering and Teehnolngy (ICETET), 2010 3rd International Conference on. Goa, India, 2010: 70-75.
  • 7Chang Ming-wei, Lin Chi-hjen. Leave-one-out Bounds for Sup- port Vector Regression Model Selection[J]. Neural Computa- tion, 2005,17(5) : 1188-1222.
  • 8Kim K J. Financial Time Series Forecasting Using Support Vec- tor Maehines[J]. Neuroeomputing, 2003,55(3) : 307-319.
  • 9Kalman R. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960,82 (01) : 35-46.
  • 10陆如华,徐传玉,张玲,等.卡尔曼滤波的初值计算方法及其应用[J].应用气象学报,1999,12(3):63-67.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部