摘要
为降低公路隧道建设过程中围岩掉块、塌方等灾害的发生,在充分发挥工程数据价值的基础上,建立了基于XGBoost算法的公路隧道失稳风险评估模型.选取岩体的风化程度、围岩级别、岩体完整程度、结构面结合程度、地下水出水情况和开挖方法共6个指标作为公路隧道失稳风险评估模型的指标,通过对各定性指标进行量化赋值来实现风险评估.引入混淆矩阵和准确率对失稳风险评估模型的测试集和预测集的训练效果进行检验.通过对比大华山隧道模型应用结果与实际工程结果,对所建立的风险评估模型进行了验证,验证结果二者呈现高度的一致性,成功预警了围岩失稳灾害的发生.基于Visual Basic自主开发了“公路隧道失稳风险评估系统”,实现了公路隧道建设过程中准确快速的失稳风险评估.
In order to reduce the occurrence of disasters such as rock fall and landslide during the construction of road tunnels,this paper establishes a road tunnel instability risk assessment model based on XGBoost algorithm on the basis of giving full play to the value of engineering data.Six indicators,namely,weathering degree of rock body,surrounding rock level,integrity of rock body,structural surface bonding degree,groundwater outflow and excavation method,are selected as the assessment indicators of the instability risk assessment model of the road tunnel,and the risk assessment is achieved by quantitatively assigning the values to each qualitative indicator.Confusion matrix and accuracy rate are introduced to test the training effect of the test set and prediction set of the instability risk assessment model.The risk assessment model is validated by comparing the results of the Dahuashan Tunnel with the results of the actual project,and the validation results show a high degree of consistency,which successfully warns the occurrence of surrounding rock instability disaster.Based on Visual Basic,the“Road Tunnel Instability Risk Assessment System(RCIAS)”was developed independently,which realises accurate and fast instability risk assessment in the construction process of road tunnels.
作者
王迎超
郭崟
姜雯
张政
邹鹤民
WANG Yingchao;GUO Yin;JIANG Wen;ZHANG Zheng;ZOU Hemin(State Key Laboratory of Intelligent Construction and Healthy Operation&Maintenance of Deep Underground Engineering,China University of Mining&Technology,Xuzhou 221116,China;School of Mechanics&Civil Engineering,China University of Mining&Technology,Xuzhou 221116,China;Qingdao Metro Group Co.,Ltd,Qingdao 266100,China;Hefei Railway Hub Project Construction Headquarters of China Railway Shanghai Bureau Group Co.,Ltd.,Hefei 230011,China;China Railway 16th Bureau Group Third Engineering Co.,Ltd.,Huzhou 313000,China)
出处
《应用基础与工程科学学报》
EI
CSCD
北大核心
2024年第4期957-971,共15页
Journal of Basic Science and Engineering
基金
国家自然科学基金项目(42272313)
国家重点研发计划项目(2022YFC3003304)
中铁十六局集团有限公司科技计划项目(K2023-6B)
中国铁路上海局集团有限公司科研项目(2022178)。
关键词
公路隧道
失稳风险评估
定性指标量化赋值
机器学习
XGBoost算法
预警系统
road tunnel
instability risk assessment
quantification of qualitative indicators
machine learning
XGBoost algorithm
early warning system