期刊文献+

High-Frequency Observations of Oceanic Internal Waves from Geostationary Orbit Satellites 被引量:2

原文传递
导出
摘要 The Geostationary Orbiting Satellite(GOS)offers extensive opportunities for the study of oceanic internal waves(IWs)through high-frequency observations.In this study,the spatial and temporal distributions of sunglint from 3 GOSs(Himawari-8,FY-4A,and GK-2A)were calculated,and the observation times of IWs in various seas were also recorded.The GOS can continuously observe IWs at a frequency of 10 min for 2 to 3 h.As demonstrated by the application to IWs in the Andaman Sea,the GOS effectively captures the surface features of IWs,including soliton number,the length and wavelength of the leading wave,and the speed and direction of propagation.Furthermore,the GOS can be used to track the dynamic processes of IWs within a short duration and provide more accurate“instantaneous”phase speeds.In the case of the Indonesian Seas,the average error of the GOS-derived phase speeds is 0.13 m/s compared to the Korteweg–de Vries phase speeds.Additionally,a 7-day observation from FY-4A suggests the possibility of diurnal IWs in the Sulu Sea.The advent of high-temporal-resolution GOS provides an enriched dataset for oceanic IW studies,which will contribute greatly to a more comprehensive understanding of IW mechanisms.
出处 《Ocean-Land-Atmosphere Research》 2023年第1期285-297,共13页 海洋-陆地-大气研究(英文)
基金 supported by the National Natural Science Foundation of China(42227901) the Zhejiang Provincial Natural Science Foundation of China(LR21D060002 and LGF21D060002) the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(311021004)。
  • 相关文献

参考文献8

二级参考文献30

  • 1王隽,杨劲松,周礼英,贺双颜,贺治国,肖清梅,刘安国,许明光.基于多源卫星遥感数据的安达曼海及其邻近海域内波分布特征分析[J].海洋学研究,2019(3):1-11. 被引量:5
  • 2GUO Pu FANG Wendong GAN Zijun CHEN Rongyu LONG Xiaomin.Internal tide characteristics over northern South China Sea continental slope[J].Chinese Science Bulletin,2006,51(B12):17-25. 被引量:8
  • 3[1]Alpers W. 1985. Theory of radar imaging of internal waves. Nature, 314:245~247
  • 4[2]Fan Zhisong. 2002. Research Fundamentals of Ocean Interior Mixing. Beijing: China Ocean Press
  • 5[3]Holloway P E, Pelinovsky E, Talipova T, et al. 1997. A nonlinear model of internal tide transformation on the Australian North West Shelf. J Phys Oceanog, 27:871~896
  • 6[4]Hsu M K, Liu A K, Liu C. 2000. A study of internal waves in the China seas and Yellow Sea using SAR. Continental Shelf Research, 20:389~410
  • 7[5]Lamb K, Yan L. 1996. The evolution of internal wave undular bores: comparisons of a fully nonlinear numerical model with weakly nonlinear theory. J Phys Oceanogr, 26(12): 2 712~2 734
  • 8[6]Li Xiaofeng, Clemente-Colon P, Friedman K S. 2000. Estimating oceanic mixed-layer depth from internal wave evolution observed from Radarsat-1 SAR. Johns Hopkins Apl Technical Digest, 21(1): 130~135
  • 9[7]Liang N K, Liu A K, Peng C Y. 1995. A preliminary study of SAR imagery on Taiwan coastal water. Acta Oceanographica Taiwanica, 34(1): 17~28
  • 10[8]Liu A K, Chang Y S, Hsu M K, et al. 1998. Evolution of nonlinear intemal waves in the East and South China Seas. J Geophys Res, 103(C4): 7 995~8 008

共引文献46

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部