期刊文献+

Quantitative Causality, Causality-Aided Discovery, and Causal Machine Learning

原文传递
导出
摘要 It has been said,arguably,that causality analysis should pave a promising way to interpretable deep learning and generalization.Incorporation of causality into artificial intelligence algorithms,however,is challenged with its vagueness,nonquantitativeness,computational inefficiency,etc.During the past 18 years,these challenges have been essentially resolved,with the establishment of a rigorous formalism of causality analysis initially motivated from atmospheric predictability.This not only opens a new field in the atmosphere-ocean science,namely,information flow,but also has led to scientific discoveries in other disciplines,such as quantum mechanics,neuroscience,financial economics,etc.,through various applications.This note provides a brief review of the decade-long effort,including a list of major theoretical results,a sketch of the causal deep learning framework,and some representative real-world applications pertaining to this journal,such as those on the anthropogenic cause of global warming,the decadal prediction of El Niño Modoki,the forecasting of an extreme drought in China,among others.
出处 《Ocean-Land-Atmosphere Research》 2023年第1期309-314,共6页 海洋-陆地-大气研究(英文)
基金 supported by National Science Foundation of China(grant#42230105) Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(#313022005 and#SML2023SP203) Fudan University(#IDH2318009Y) Shanghai B&R Joint Laboratory Project(#222-30750300) Shanghai International Science and Technology Partnership Project(#21230780200).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部