摘要
图像异常数据作为网络安全检测的核心监控对象,面临着样本不均衡、数据缺乏标注以及异常形式多样化等挑战,针对这些问题,创新性地提出了自信息量挖掘模块,旨在学习已知类别样本的数据模式;同时提出了三元组信息量学习策略,优化类别信息学习和已知类别的数据模式学习,最终实现了在网络安全防护场景中对图像的未知类别样本的异常检测。实验结果表明,异常检测算法可以有效提升网络安全防护的准确性,在实际应用中表现出色。
Abnormal image data,as the core monitoring target of network security detection,faces challenges such as sample imbalance,lack of data annotation,and diverse forms of abnormalities.To address these issues,it innovatively proposes a self-information mining module aimed to learn the data patterns of known-category samples.Simultaneously,a triplet information learning strategy is introduced to optimize category information learning and known-category data pattern learning,ultimately enabling the detection of abnormalities for unknown class samples of images in the context of network security protection.Experimental results show that the anomaly detection algorithm can effectively improve the accuracy of network security protection,demonstrating excellent performance in practical applications.
作者
刘洋
翟锐
巩坤
Liu Yang;Zhai Rui;Gong Kun(China Unicom Shandong Branch,Jinan 250014,China)
出处
《邮电设计技术》
2024年第8期24-28,共5页
Designing Techniques of Posts and Telecommunications
关键词
深度学习
异常检测
网络安全
数据模式
Deep learning
Anomaly detection
Network security
Data pattern