摘要
为了提高康复步行训练器人的智能性和安全性,提出一种运动速度决策的康复训练机器人限时学习迭代控制方法,目的是抑制训练者位姿不确定性和人机速度不协调对系统安全性能的影响.建立具有系统不确定偏移量的康复步行训练机器人动力学模型,通过比较康复训练机器人当前的运动速度和训练者的实际步行速度,提出机器人运动速度的决策方法,从而使康复者在主动训练模式下实现人机速度协调运动;进一步,利用机器人决策的运动速度和动力学模型建立跟踪误差系统,提出有限学习时间的迭代控制方法,并基于Lyapunov理论验证跟踪误差系统的有限时间稳定性.仿真对比分析和实验结果表明,所提出的速度决策方法和跟踪控制方法能使人机系统协调地进行主动模式的康复训练.
To improve the intelligence and safety of the rehabilitation walking training robot,a time-limited learning iterative control method for the rehabilitation training robot based on motion speed decision is proposed to reduce the influence of trainer’s pose uncertainty and human-robot velocity incoordination on the safety performance of the system.A dynamic model of the rehabilitation walking training robot with system uncertain offset is established.By comparing the current movement velocity of the rehabilitation training robot and the actual walking velocity of the trainer,a movement velocity decision method for the robot is proposed.Thereby,the trainer can realize the coordination of human-robot movement velocity in the active training mode.Furthermore,a tracking error system is established by using the movement velocity of the robot decision-making and dynamic model,an iterative control method with limited learning time is proposed,and the stability of the tracking error system is verified based on Lyapunov theory.The simulation comparative analysis and experimental results show that the proposed velocity decision method and tracking control method can enable the human-robot system to coordinate rehabilitation training in the active mode.
作者
单芮
孙平
王硕玉
SHAN Rui;SUN Ping;WANG Shuo-yu(School of Artificial Intelligence,Shenyang University of Technology,Shenyang 110870,China;Department of Intelligent Mechanical Systems Engineering,Kochi University of Technology,Kochi 7828502,Japan)
出处
《控制与决策》
EI
CSCD
北大核心
2024年第8期2679-2684,共6页
Control and Decision
基金
国家自然科学基金项目(61903261)
辽宁省自然科学基金项目(2019ZD0203).
关键词
康复步行训练机器人
每步限时学习
运动速度决策
迭代学习控制
人机速度协调
主动康复训练
rehabilitative training walker
each step time-limited learning
movement velocity decision
iterative learning control
human-robot velocity coordination
active training